Advertisement

Renormalization group analysis of ultracold Fermi gases with two-body attractive interaction

  • Xiaoyong GuoEmail author
  • Zimeng Chi
  • Qiang Zheng
  • Zaijun Wang
Regular Article
  • 111 Downloads

Abstract

We propose a new functional renormalization group (RG) strategy to investigate the many-body physics of interacting ultracold Fermi gases. By mapping the Ginzburg-Landau (GL) action of Fermi gases onto a complex φ 4-model, we can obtain the closed flow equation in the one-loop approximation. An analysis of the emerging RG flow gives the ground state behavior. The Hamiltonian of a Fermi gas with a two-body attractive interaction is used as a demonstration to clarify our treatment. The fixed point structure reveals not only the condensation phase transition, but also the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) crossover. The effect of the imaginary time renormalization is also discussed. It is shown that for the dynamical field configuration our RG procedure can reproduce the well known theoretical results of BCS-BEC crossover, while under a static approximation the phase transition takes place at a higher critical temperature.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, arXiv:cond-mat/9904034 (1999)
  2. 2.
    W. Ketterle, M.W. Zwierlein, arXiv:0801.2500 (2008)
  3. 3.
    H. Feshbach, Theoretical Nuclear Physics (Wiley, 1992)Google Scholar
  4. 4.
    Y.C. Zhang, W.M. Liu, H. Hu, Phys. Rev. A 90, 052722 (2014)CrossRefADSGoogle Scholar
  5. 5.
    A.J. Leggett, J. Phys. C 41, 7 (1980)Google Scholar
  6. 6.
    P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)CrossRefADSGoogle Scholar
  7. 7.
    C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)CrossRefADSGoogle Scholar
  8. 8.
    R. Hanai, T. Kashimura, R. Watanabe, D. Inotani, Y. Ohashi, Phys. Rev. A 88, 053621 (2013)CrossRefADSGoogle Scholar
  9. 9.
    T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 013618 (2014)CrossRefADSGoogle Scholar
  10. 10.
    H. Guo, Y. Li, Y. He, C.C. Chien, J. Phys. B 47, 085302 (2014)CrossRefADSGoogle Scholar
  11. 11.
    P.-A. Pantel, D. Davesne, M. Urban, Phys. Rev. A 90, 053629 (2014)CrossRefADSGoogle Scholar
  12. 12.
    F. Palestini, G.C. Strinati, Phys. Rev. B 88, 174504 (2013)CrossRefADSGoogle Scholar
  13. 13.
    E.Z. Kuchinskii, N.A. Kuleeva, M.V. Sadovskii, J. Exp. Theor. Phys. Lett. 100, 192 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Guo, Z. Ren, G. Guo, J. Peng, Phys. Rev. A 86, 053605 (2012)CrossRefADSGoogle Scholar
  15. 15.
    A. Amaricci, A. Privitera, M. Capone, Phys. Rev. A 89, 053604 (2014)CrossRefADSGoogle Scholar
  16. 16.
    M. Gong, S. Tewari, C. Zhang, Phys. Rev. Lett. 107, 195303 (2011)CrossRefADSGoogle Scholar
  17. 17.
    L. He, X.-G. Huang, H. Hu, X.-J. Liu, Phys. Rev. A 87, 053616 (2013)CrossRefADSGoogle Scholar
  18. 18.
    F. Wu, R. Zhang, T.-S. Deng, W. Zhang, W. Yi, G.-C. Guo, Phys. Rev. A 89, 063610 (2014)CrossRefADSGoogle Scholar
  19. 19.
    Z. Zheng, M. Gong, Y.C. Zhang, X.B. Zou, C.W. Zhang, G.-C. Guo, Sci. Rep. 4, 6535 (2014)CrossRefADSGoogle Scholar
  20. 20.
    X.-J. Liu, H. Hu, H. Pu, Chinese Phys. B 24, 050502 (2015)CrossRefADSGoogle Scholar
  21. 21.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)CrossRefADSGoogle Scholar
  22. 22.
    L. Sanchez-Palencia, M. Lewenstein, Nat. Phys. 6, 87 (2010)CrossRefGoogle Scholar
  23. 23.
    Y.J. Lin, K.J. García, I.B. Spielman, Nature 471, 83 (2011)CrossRefADSGoogle Scholar
  24. 24.
    B.M. Anderson, G. Juzeliūnas, V.M. Galitski, I.B. Spielman, Phys. Rev. Lett. 108, 235301 (2012)CrossRefADSGoogle Scholar
  25. 25.
    A. Altland, B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006)Google Scholar
  26. 26.
    G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)CrossRefADSGoogle Scholar
  27. 27.
    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006)CrossRefADSGoogle Scholar
  28. 28.
    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. A 78, 023625 (2008)CrossRefADSGoogle Scholar
  29. 29.
    N. Matveeva, S. Giorgini, Phys. Rev. A 90, 053620 (2014)CrossRefADSGoogle Scholar
  30. 30.
    Y. Nishida, D.T. Son, Phys. Rev. A 75, 063617 (2007)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    P. Nikolic, S. Sachdev, Phys. Rev. A 75, 033608 (2007)CrossRefADSGoogle Scholar
  32. 32.
    H. Abuki, T. Brauner, Phys. Rev. D 78, 125010 (2008)CrossRefADSGoogle Scholar
  33. 33.
    S. Diehl, C. Wetterich, Nucl. Phys. B 770, 206 (2007)CrossRefADSzbMATHGoogle Scholar
  34. 34.
    S. Floerchinger, M. Scherer, S. Diehl, C. Wetterich, Phys. Rev. B 78, 174528 (2008)CrossRefADSGoogle Scholar
  35. 35.
    P. Nikolić, S. Sachdev, Phys. Rev. A 75, 033608 (2007)CrossRefADSGoogle Scholar
  36. 36.
    S. Diehl, S. Floerchinger, H. Gies, J.M. Pawlowski, C. Wetterich, Ann. Phys. 522, 615 (2010)Google Scholar
  37. 37.
    I. Boettcher, J.M. Pawlowski, S. Diehl, Nucl. Phys. B Proc. Suppl. 228, 63 (2012)CrossRefADSGoogle Scholar
  38. 38.
    X. Guo, Z. Ren, Z. Chi, Phys. Rev. A 85, 023608 (2012)CrossRefADSGoogle Scholar
  39. 39.
    M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xiaoyong Guo
    • 1
    Email author
  • Zimeng Chi
    • 2
  • Qiang Zheng
    • 3
  • Zaijun Wang
    • 4
  1. 1.School of Science, Tianjin University of Science and TechnologyTianjinP.R. China
  2. 2.Department of Basic CoursesTianjin University of Finance and Economics Pearl River CollegeTianjinP.R. China
  3. 3.School of Mathematics and Computer Science, Guizhou Normal UniversityGuizhouP.R. China
  4. 4.School of Science, Tianjin University of Technology and EducationTianjinP.R. China

Personalised recommendations