Advertisement

Optical limiting and dynamical two-photon absorption of porphyrin with ruthenium outlying complexes for a picosecond pulse train

  • Yu-Jin Zhang
  • Yu-Ping SunEmail author
  • Chuan-Kui WangEmail author
Regular Article

Abstract

Propagation and nonlinear optical absorption of a picosecond pulse train in strong reverse saturable absorption (RSA) materials (free-based tetrapyridyl porphyrin H2TPyP with ruthenium (Ru) outlying complexes) are investigated by solving coupled rate equations and field intensity equation. Influence of outlying Ru groups on optical limiting (OL) properties is studied. Propagation of the front subpulses is mainly affected by linear transition between the ground state and the first excited singlet state, while intensity of the latter subpulses is attenuated by the excited state absorption (ESA). These two different absorption mechanisms result in asymmetric distribution of the transmitted pulse. It is shown that effective population transfer time from the ground state to the lowest triplet state and RSA play important roles in the OL performance and pulse shaping. Moreover, our results indicate that the porphyrins studied are ideal optical limiters because of their large ESA cross section and long lifetime of the lowest triplet state. Compounds with the presence of Ru group possess preferable power limiting ability. Ligand group attached to Ru also influences the nonlinear optical absorption of compounds. Special attention has been paid on dynamical two-photon absorption (TPA) cross section which depends crucially on the duration of the subpulse as well as time interval between subpulses. The present study provides a way to modulate nonlinear optical absorption properties of the medium by changing parameters of the pulse train.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    C.K. Wang, P. Zhao, Q. Miao, Y.P. Sun, Y. Zhou, J. Phys. B 43, 105601 (2010)CrossRefADSGoogle Scholar
  2. 2.
    Q. Miao, H.J. Ding, Y.P. Sun, F. Gel’mukhanov, C.K. Wang, J. Phys. B 45, 085402 (2012)CrossRefADSGoogle Scholar
  3. 3.
    J.H. Zhu, Y.X. Li, Y. Chen, J. Wang, B. Zhang, J.J. Zhang, W.J. Blau, Carbon 49, 1900 (2011)CrossRefGoogle Scholar
  4. 4.
    G.J. Ye, T.T. Zhao, Z.N. Jin, P.Y. Gu, J.Y. Mao, Q.H. Xu, Q.F. Xu, J.M. Lu, N.J. Li, Y.L. Song, Dyes Pigments 94, 271 (2012)CrossRefGoogle Scholar
  5. 5.
    G.P. Zhang, X. Sun, T.F. George, J. Phys. Chem. A 113, 1175 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.J. Zhang, W.J. Yang, J.Z. Fan, Y.Z. Song, C.K. Wang, Chinese J. Chem. Phys. 28, 257 (2015)CrossRefADSGoogle Scholar
  7. 7.
    Y.J. Zhang, Y. Zhou, J.Y. Ma, Y. Chen, C.K. Wang, J. At. Mol. Sci. 5, 254 (2014)Google Scholar
  8. 8.
    C.K. Wang, J.C. Liu, K. Zhao, Y.P. Sun, Y. Luo, J. Opt. Soc. Am. B 24, 2436 (2007)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. Gavrilyuk, J.C. Liu, K. Kamada, H. Ågren, F. Gel’mukhanov, J. Chem. Phys. 130, 054114 (2009)CrossRefADSGoogle Scholar
  10. 10.
    J.C. Liu, C.K. Wang, F. Gel’mukhanov, Phys. Rev. A 76, 053804 (2007)CrossRefADSGoogle Scholar
  11. 11.
    S.V. Rao, P.T. Anusha, T.S. Prashant, D. Swain, S.P. Tewari, Mater. Sci. Appl. 2, 299 (2011)Google Scholar
  12. 12.
    K. Naseema, K.B. Manjunatha, K.V. Sujith, G. Umesh, B. Kalluraya, V. Rao, Opt. Mater. 34, 1751 (2012)CrossRefADSGoogle Scholar
  13. 13.
    T.M. Pritchett, M.J. Ferry, A.G. Mott, W. Shensky III, J.E. Haley, R. Liu, W.F. Sun, Opt. Mater. 39, 195 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Thekkayil, R. Philip, P. Gopinath, H. John, Mater. Chem. Phys. 146, 218 (2014)CrossRefGoogle Scholar
  15. 15.
    M.B.M. Krishna, N. Venkatramaiah, R. Venkatesan, D.N. Rao, J. Mater. Chem. 22, 3059 (2012)CrossRefGoogle Scholar
  16. 16.
    N. Venkatramaiah, R. Venkatesan, Solid State Sci. 13, 616 (2011)CrossRefADSGoogle Scholar
  17. 17.
    M. Calvete, G.Y. Yang, M. Hanack, Synth. Met. 141, 231 (2004)CrossRefGoogle Scholar
  18. 18.
    N.M.B. Neto, S.L. Oliveira, L. Misoguti, C.R. Mendonça, P.J. Gonçalves, I.E. Borissevitch, L.R. Dinelli, L.L. Romualdo, A.A. Batista, S.C. Zilioa, J. Appl. Phys. 99, 123103 (2006)CrossRefADSGoogle Scholar
  19. 19.
    H. Ma, J.C. Leng, M. Liu, L.N. Zhao, Y. Jiao, Opt. Commun. 350, 144 (2015)CrossRefADSGoogle Scholar
  20. 20.
    Y.J. Zhang, Y.Z. Song, C.K. Wang, Chinese J. Chem. Phys. 27, 259 (2014)CrossRefADSGoogle Scholar
  21. 21.
    Y. Zhou, Q. Miao, Y.P. Sun, F. Gel’mukhanov, C.K. Wang, J. Phys. B 44, 035103 (2011)CrossRefADSGoogle Scholar
  22. 22.
    L.D. Boni, D.C.J. Rezende, C.R. Mendonca, J. Photochem. Photobiol. A 190, 41 (2007)CrossRefGoogle Scholar
  23. 23.
    P.J. Goncalves, L.D. Boni, N.M.B. Neto, J.J. Rodrigues Jr., S.C. Zilio, I.E. Borissevitch, Chem. Phys. Lett. 407, 236 (2005)CrossRefADSGoogle Scholar
  24. 24.
    N. Pinçon, B. Palpanta, D. Prot, E. Charron, S. Debrus, Eur. Phys. J. D 19, 395 (2002)CrossRefADSGoogle Scholar
  25. 25.
    R.S.S. Kumar, S.V. Rao, L. Giribabu, D.N. Rao, Chem. Phys. Lett. 447, 274 (2007)CrossRefADSGoogle Scholar
  26. 26.
    N. Venkatram, D.N. Rao, L. Giribabu, S.V. Rao, Chem. Phys. Lett. 464, 211 (2008)CrossRefADSGoogle Scholar
  27. 27.
    R.N. Sampaio, W.R. Gomes, D.M.S. Araujo, A.E.H. Machado, R.A. Silva, A. Marletta, I.E. Borissevitch, A.S. Ito, L.R. Dinelli, A.A. Batista, S.C. Zílio, P.J. Goncalves, N.M. BarbosaNeto, J. Phys. Chem. A 116, 18 (2012)CrossRefGoogle Scholar
  28. 28.
    J.D. Bhawalkar, G.S. He, P.N. Prasad, Rep. Prog. Phys. 59, 1041 (1996)CrossRefADSGoogle Scholar
  29. 29.
    Y.P. Sun, J.C. Liu, C.K. Wang, Acta Opt. Sin. 29, 1621 (2009)CrossRefGoogle Scholar
  30. 30.
    G.S. He, L.X. Yuan, N. Cheng, J.D. Bhawalkar, P.N. Prasad, L.L. Brott, S.J. Clarson, B.A. Reinhardt, Opt. Soc. Am. B 14, 1079 (1997)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Physics and Electronics, Shandong Normal UniversityJinanP.R. China
  2. 2.School of Science, Shandong University of TechonologyZiboP.R. China

Personalised recommendations