Three dimensional dynamic study of a metal halide thallium iodine discharge plasma powered by a sinusoidal and square signal

  • Mohamed Bechir Ben HamidaEmail author
  • Kamel Charrada
Regular Article


The purpose of this paper is to study the dynamic of a metal halide thallium iodine discharge lamp fed by a sinusoidal and square power supply. For this, a chemical model under Local Thermodynamic Equilibrium conditions has been developed to compute the plasma composition and transport coefficients such as thermal conductivity, viscosity and electric conductivity. This is then coupled with a three-dimensional time-dependent code that solves the system of the mass, energy and momentum equations, as well as the Laplace equation for the plasma using Comsol Multiphysics with Matlab. After validation with the experimental results, this model was applied to analyze the influence of the key parameters on the discharge behavior such as frequency for an AC arc current and the atomic ratio for square arc-current wave form on the convective process.

Graphical abstract


Plasma Physics 


  1. 1.
    M.B. Gotti, R.L. Paugh, IEEE Trans. Ind. Appl. IA-19 (1983)Google Scholar
  2. 2.
    D. Karabourniotis, E. Drakakis, IEEE Trans. Plasma Sci. 31 (2003)Google Scholar
  3. 3.
    A. Kostic, L. Djokic, Lighting Res. Technol. 46, 293 (2014)CrossRefGoogle Scholar
  4. 4.
    J.F. Waymouth, Proc. IEEE 59 (1971)Google Scholar
  5. 5.
    A. Dobrusskin, Lighting Res. Technol. 3, 125 (1971)CrossRefGoogle Scholar
  6. 6.
    M.B. Ben Hamida, K. Charrada, IEEE Trans. Plasma Sci. 41 (2013)Google Scholar
  7. 7.
    J. Ribas, J. Marcos Alonso, A.J. Calleja, E. Lopez, J. Cardesin, J. Garcia, M. Rico, IEEE Trans. Power Electronics 22 (2007)Google Scholar
  8. 8.
    J. Schwieger, M. Wolff, B. Baumann, F. Manders, J. Suijker, IEEE Trans. Ind. Appl. 51 (2015)Google Scholar
  9. 9.
    W. Kaiser, IEEE Trans. Ind. Appl. 37 (2001)Google Scholar
  10. 10.
    W. Nsibi, M.N. Nehdi, A. Chammam, H. Elloumi, A. Sellami, G. Zissis, Lighting Res. Technol. 46, 739 (2014)CrossRefGoogle Scholar
  11. 11.
    C.-S. Moo, S.-Y. Tang, C.-R. Lee, J.-H. Chen, W.-T. Tsai, IEEE Trans. Plasma Sci. 37 (2009)Google Scholar
  12. 12.
    A. Martín, N. Bordel, C. Blanco, J.C. Alvarez, Antón, G. Zissis, IEEE Trans. Ind. Appl. 46 (2010)Google Scholar
  13. 13.
    A. Dobrusskin, Lighting Res. Technol. 40, 333 (2008)CrossRefGoogle Scholar
  14. 14.
    M.B. Ben Hamida, S. Hadj Salah, K. Charrada, Eur. Phys. J. D 69, 206(2015)ADSCrossRefGoogle Scholar
  15. 15.
    D.B. Zriouil, Thèse du Doctorat, Université Paul Sabatier, Toulouse, 1987Google Scholar
  16. 16.
    L. Troudi, R. Ben Ahmed, S. El Aissi, K. Charrada, G. Zissis, M. Sassi, J. Phys. D 37, 610 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M. Bouaoun, H. Elloumi, L. Troudi, A. Chammam, K. Charrada, M. Stambouli, J. Phys. D 43 (2010)Google Scholar
  18. 18.
    J.M. Tauziede, Thèse de 3ème cycle Université Paul Sabatier, Toulouse, 1986Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.High School of Sciences and Technology of Hammam Sousse (ESSTHS) 4011 street Lamine Abassi, Department of Physics, University of SousseSousseTunisia
  2. 2.Research Unit of Ionized Backgrounds and Reagents Studies (UEMIR), Preparatory Institute for Engineering Studies of Monastir (IPEIM), 5019 Kairouan street, University of MonastirMonastirTunisia

Personalised recommendations