Advertisement

Correlation of optical reflectivity with numerical calculations for a two-dimensional photonic crystal designed in Ge

  • Marius Adrian Husanu
  • Dana Georgeta PopescuEmail author
  • Constantin Paul Ganea
  • Iulia Anghel
  • Camelia Florica
Regular Article
  • 129 Downloads

Abstract

A two dimensional photonic crystal (2DPhC) with triangular symmetry is investigated using optical reflectivity measurements and numerical calculations. The system has been obtained by direct laser writing, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer. A lattice of holes with well-defined symmetry has been designed. Analyzing the spectral signature of PBGs recorded experimentaly with finite difference time domain theoretical calculations one was able to prove the relation between the geometric parameters (hole format, lattice constant) of the system and its ability to trap and guide the radiation in specific energy range. It was shown that at low frequency and telecommunication ranges of transvelsal electric modes photonic band gap occur. This structure may have potential aplications in designing photonic devices with applications in energy storage and conversion as potential alternative to Si-based technology.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) CrossRefADSGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987) CrossRefADSGoogle Scholar
  3. 3.
    S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science 289, 604 (2000) CrossRefADSGoogle Scholar
  4. 4.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, 2008)Google Scholar
  5. 5.
    D.C. Marinica, A.G. Borisov, S.V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008) CrossRefADSGoogle Scholar
  6. 6.
    J. Dahdah, M. Pilar-Bernal, N. Courjal, G. Ulliac, F. Baida, J. Appl. Phys. 110, 074318 (2011) CrossRefADSGoogle Scholar
  7. 7.
    X. Liu, T. Shimada, R. Miura, S. Iwamoto, Y. Arakawa, Y.K. Kato, Phys. Rev. Appl. 3, 014006 (2015) CrossRefADSGoogle Scholar
  8. 8.
    H.W. Yang, D. Xu, Eur. Phys. J. D 64, 387 (2013)CrossRefADSGoogle Scholar
  9. 9.
    U.W. Paetzold, S. Lehnen, K. Bittkau, U. Rau, R. Carius, Nano Lett. 14, 6599 (2014) CrossRefADSGoogle Scholar
  10. 10.
    R. Abdi-Ghaleh, M. Asad, Eur. Phys. J. D 69, 13 (2015)CrossRefADSGoogle Scholar
  11. 11.
    D.G. Popescu, U. Politeh. Buch. Sci. Bull., Ser. A 75, 237 (2013)Google Scholar
  12. 12.
    B. Rezaei, T.F. Khalkhali, A.S. Vala, M. Kalafi, J. Mod. Optic. 61, 904 (2014)CrossRefADSGoogle Scholar
  13. 13.
    H. Zhong, B. Tian, Y. Jiang, M. Li, P. Wang, W.J. Liu, Eur. Phys. J. D 67, 131 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Y. Akahane, T. Asano, B.S. Song, S. Noda, Appl. Phys. Lett. 83, 1512 (2003) CrossRefADSGoogle Scholar
  15. 15.
    S. Vignolini, F. Intonti, F. Riboli, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, D.S. Wiersma, M. Gurioli, Phys. Rev. Lett. 105, 123902 (2010) CrossRefADSGoogle Scholar
  16. 16.
    C.O. Chui, K.C. Saraswat, in Advanced Germanium MOS Devices. In Germanium-Based Technologies: from Materials to Devices (Elsevier, Amsterdam, 2007), pp. 363−386Google Scholar
  17. 17.
    S. Assefa, F. Xia, Y. Vlasov, Nature 464, 80 (2010)CrossRefADSGoogle Scholar
  18. 18.
    J. Michel, J. Liu, L.C. Kimerling, Nat. Photonics 4, 527 (2010)CrossRefADSGoogle Scholar
  19. 19.
    P. Boucaud, M. El Kurdi, A. Ghrib, M. Prost, M. de Kersauson, S. Sauvage, F. Aniel, X. Checoury, G. Beaudoin, L. Largeau, I. Sagnes, G. Ndong, M. Chaigneau, R. Ossikovski, Photonics Res. 1, 102 (2013)CrossRefGoogle Scholar
  20. 20.
    R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, J. Michel, Opt. Express 20, 11316 (2012) CrossRefADSGoogle Scholar
  21. 21.
    V. Sorianello, L. Colace, C. Maragliano, D. Fulgoni, L. Nash, G. Assanto, Opt. Mater. Express 3, 216 (2013)CrossRefGoogle Scholar
  22. 22.
    D.G. Popescu, M.A. Husanu, Phys. Status Solidi RRL 7, 274 (2013)CrossRefGoogle Scholar
  23. 23.
    D.G. Popescu, M.A. Husanu, Thin Solid Films 552, 241 (2014) CrossRefADSGoogle Scholar
  24. 24.
    W. Zhang, X. Lin, Z. Jin, G. Ma, M. Zhong, Opt. Express 21, 27622 (2013) CrossRefADSGoogle Scholar
  25. 25.
    M.A. Husanu, C.P. Ganea, I. Anghel, C. Florica, O. Rasoga, D.G. Popescu, Appl. Surf. Sci. 355, 1186 (2015) CrossRefADSGoogle Scholar
  26. 26.
    I. Anghel, F. Jipa, A. Andrei, S. Simion, R. Dabu, A. Rizea, M. Zamfirescu, Optics Laser Technol. 52, 65 (2013)CrossRefADSGoogle Scholar
  27. 27.
    S.G. Johnson, J.D. Joannopoulos, MIT Photonic-Bands Package, http://ab-initio.mit.edu/mpb/
  28. 28.
    S.G. Johnson, J.D. Joannopoulos, MIT Electromagnetic Equation Propagation Bands Package, http://ab-initio.mit.edu/meep/
  29. 29.
    S. Johnson, J. Joannopoulos, Opt. Express 8, 173 (2001)CrossRefADSGoogle Scholar
  30. 30.
    K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelasvili, M. Wegener, Phys. Rep. 444, 101 (2007) CrossRefADSGoogle Scholar
  31. 31.
    Z. Zhang, S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990) CrossRefADSGoogle Scholar
  32. 32.
    C.W. Hsu, B. Zhen, J. Lee, S.L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Slojacic, Nature 499, 188 (2013) CrossRefADSGoogle Scholar
  33. 33.
    C.W. Hsu, B. Zhen, S.L. Chua, S.G. Johnson, J.D. Joannopoulos, M. Soljacic, Light: Sci. Appl. 2, e84 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Iwahashi, Y. Kurosaka, K. Sakai, K. Kitamura, N. Takayama, S. Noda, Opt. Express 19, 11963 (2011) CrossRefADSGoogle Scholar
  35. 35.
    L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hoenerlage, I. Pelant, Appl. Phys. Lett. 102, 251111 (2013) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marius Adrian Husanu
    • 1
  • Dana Georgeta Popescu
    • 1
    Email author
  • Constantin Paul Ganea
    • 1
  • Iulia Anghel
    • 2
    • 3
  • Camelia Florica
    • 1
  1. 1.National Institute of Materials PhysicsMagurele-IlfovRomania
  2. 2.National Institute for Laser, Plasma & Radiation PhysicsMagureleRomania
  3. 3.University of Bucharest, Faculty of PhysicsMagureleRomania

Personalised recommendations