The countermeasures against the blinding attack in quantum key distribution

  • Jindong WangEmail author
  • Hong Wang
  • Xiaojuan Qin
  • Zhengjun Wei
  • Zhiming Zhang
Regular Article


It has been shown that the single photon detectors (SPDs) based on the avalanche photodiode (APD) can be blinded and controlled by the bright light and short trigger pulses. Eavesdropper can get the full information without causing additional quantum bit error rate. Hence, in order to guarantee the security of the quantum key distribution (QKD) systems, some countermeasures, by changing the characteristic of the SPD or monitoring the parameters of the detector, are presented by some research groups. In this paper, we provide a new and effective countermeasure against the blinding attack based on improving the optical scheme of the decoding unit in the QKD system rather than only considering the characteristic of the SPD. In our proposal we use a coupler with asymmetric splitting ratio to distinguish the detection characteristic of the SPD with blinding attack from that without blinding attack. The detailed analysis shows that the proposed scheme is feasible to defense the blinding attack.

Graphical abstract


Quantum Information 


  1. 1.
    C.H. Bennett, G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore India, IEEE, 1984, pp. 175–179Google Scholar
  2. 2.
    W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982) ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Shor, J. Preskill, Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang Quan, Tang Chaojing, Phys. Rev. A 65, 062301 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev. Lett 68, 557 (1992)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    X. Ma, C.-H.F. Fung, H.-K. Lo, Phys. Rev. A 76, 012307 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    D. Gottesman, J. Preskill, Phys. Rev. A 63, 022309 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    A. Lamas-Linares, C. Kurtsiefer, Opt. Express. 15, 9388 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    S. Nauerth, M. Furst, T. Schmitt-Manderbach, H. Weier, H. Weinfurter, New J. Phys 11, 065001 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhao, C.H.F. Fuang, B. Qi, C. Chen, H.-K. Lo, Phys. Rev. A 78, 042333 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhao, B. Qi, H.-K. Lo, Phys. Rev. A 77, 052327 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    Xiang Peng, Hao Jiang, Bingjie Xu, Xiongfeng Ma, Hong Guo, Opt. Lett. 33, 2077 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy, Phys. Rev. A 73, 022320 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    Vadim Makarov, New J. Phys 11, 065003 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, V. Makarov, Opt. Express 19, 23590 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photon. 4, 686 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, Ch. Marquardt, V. Makarov, G. Leuchs, New J. Phys 13, 013043 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Z.Y. Dong, N.N. Yu, Z.J. Wei, J.D. Wang, Z.M. Zhang, Eur. Phys. J. D 68, 230 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    D. Mayers, A.C.-C. Yao, in Proceedings of the 39th Annual Symposium on Foun dations of Computer Science (FOCS98) (IEEE Computer Society, Washington, DC, 1998), p. 503Google Scholar
  20. 20.
    A. Acín et al., Phys. Rev. Lett. 98, 230501 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    N. Gisin, S. Pironio, N. Sangouard, Phys. Rev. Lett. 105, 070501 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    M. Curty, T. Moroder, Phys. Rev. A. 84, 010304(R) (2011) ADSCrossRefGoogle Scholar
  23. 23.
    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Nat. Photonics 4, 801 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    H. Kwong Lo, M. Curty, Q. Bing, Phys. Rev. Lett. 108, 1305031 (2012) Google Scholar
  25. 25.
    A. Rubenok, J.A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, Phys. Rev. Lett. 111, 130501 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J.S. Pelc, M.M. Fejer, C.-Z. Peng, Q. Zhang, J.-W. Pan, Phys. Rev. Lett. 111, 130502 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    Z.L. Yuan, J.F. Dynes, A.J. Shields, Nat. Photon. 4, 800 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    L. Lydersen, V. Makarov, J. Skaar, Phys. Rev. A 83, 032306 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Opt. Express 18, 27938 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, G. Leuchs, Phys. Rev. A 84, 032320 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jindong Wang
    • 1
    Email author
  • Hong Wang
    • 2
  • Xiaojuan Qin
    • 3
  • Zhengjun Wei
    • 1
  • Zhiming Zhang
    • 1
  1. 1.Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal UniversityGuangzhouP.R. China
  2. 2.State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen UniversityGuangzhouP.R. China
  3. 3.Department of Engineering TechnologyGuangdong Polytechnic InstituteGuangzhouP.R. China

Personalised recommendations