Advertisement

A comparative study of biomolecule and polymer surface modifications by a surface microdischarge

  • Elliot A.J. Bartis
  • Pingshan Luan
  • Andrew J. Knoll
  • David B. Graves
  • Joonil Seog
  • Gottlieb S. OehrleinEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Recent Breakthroughs in Microplasma Science and Technology

Abstract

Cold atmospheric plasma (CAP) sources are attractive sources of reactive species with promising industrial and biomedical applications, but an understanding of underlying surface mechanisms is lacking. A kHz-powered surface microdischarge (SMD) operating with N2/O2 mixtures was used to study the biological deactivation of two immune-stimulating biomolecules: lipopolysaccharide (LPS) and peptidoglycan (PGN), found in bacteria such as Escherichia coli and Staphylococcus aureus, respectively. Model polymers were also studied to isolate specific functional groups. Changes in the surface chemistry were measured to understand which plasma-generated species and surface modifications are important for biological deactivation. The overall goal of this work is to determine which effects of CAP treatment are generic and which bonds are susceptible to attack. CAP treatment deactivated biomolecules, oxidized surfaces, and introduced surface bound NO3. These effects can be controlled by the N2 fraction in O2 and applied voltage and vary among different target surfaces. The SMD was compared with an Ar/O2/N2-fed kHz-powered atmospheric pressure plasma jet and showed much higher surface modifications and surface chemistry tunability compared to the jet. Possible mechanisms are discussed and findings are compared with recent computational investigations. Our results demonstrate the importance of long-lived plasma-generated species and advance an atomistic understanding of CAP-surface interactions.

Graphical abstract

Keywords

PMMA Applied Voltage Aliphatic Chain High Binding Energy Peroxy Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Fombuena, D. Garcia-Sanoguera, L. Sanchez-Nacher, R. Balart, T. Boronat, J. Adhes. Sci. Technol. 28, 97 (2014)CrossRefGoogle Scholar
  2. 2.
    G.B. Rusu, M. Asandulesa, I. Topala, V. Pohoata, N. Dumitrascu, M. Barboiu, Biosens. Bioelectron. 53, 154 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Kusano, J. Adhesion 90, 755 (2014)CrossRefGoogle Scholar
  4. 4.
    Z. Liu, P. Chen, D. Han, F. Lu, Q. Yu, Z. Ding, Vacuum 92, 13 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht, P. Dubruel, Biomacromolecules 10, 2351 (2009)CrossRefGoogle Scholar
  6. 6.
    G. Da Ponte et al., Surf. Coat. Technol. 205, S525 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Da Ponte, E. Sardella, F. Fanelli, R. d’Agostino, P. Favia, Eur. Phys. J. Appl. Phys. 56, 24023 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    E.A.J. Bartis, D.B. Graves, J. Seog, G.S. Oehrlein, J. Phys. D Appl. Phys. 46, 312002 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M.J. Pavlovich et al., J. Phys. D Appl. Phys. 47, 5202 (2014)CrossRefGoogle Scholar
  10. 10.
    M.J. Pavlovich, Z. Chen, Y. Sakiyama, D.S. Clark, D.B. Graves, Plasma Process. Polym. 10, 69 (2013)CrossRefGoogle Scholar
  11. 11.
    M.J. Pavlovich, H.-W. Chang, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D 46, 145202 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J.-W. Lackmann et al., J. Roy. Soc. Interface 10, 20130591 (2013)CrossRefGoogle Scholar
  13. 13.
    M.J. Pavlovich, Y. Sakiyama, D.S. Clark, D.B. Graves, Plasma Process. Polym. 10, 1051 (2013)CrossRefGoogle Scholar
  14. 14.
    T.G. Klaempfl et al., Appl. Environ. Microbiol. 78, 5077 (2012)CrossRefGoogle Scholar
  15. 15.
    T. von Woedtke, S. Reuter, K. Masur, K.D. Weltmann, Phys. Rep. 530, 291 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    D.B. Graves, Phys. Plasmas 21, 080901 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    B. Haertel, T. von Woedtke, K.-D. Weltmann, U. Lindequist, Biomolecules and Therapeutics 22, 477 (2014)CrossRefGoogle Scholar
  18. 18.
    A.S. Wu et al., J. Surgical Res. 179, E1 (2013)CrossRefGoogle Scholar
  19. 19.
    K.P. Arjunan, G. Friedman, A. Fridman, A.M. Clyne, J. Roy. Soc. Interface 9, 147 (2012)CrossRefGoogle Scholar
  20. 20.
    A.M. Hirst, F.M. Frame, N.J. Maitland, D. O’Connell, BioMed Res. Int. 2014, 878319 (2014)CrossRefGoogle Scholar
  21. 21.
    B.B. Choi, et al., J. Biomed. Nanotechnol. 11, 900 (2015)CrossRefGoogle Scholar
  22. 22.
    N.K. Kaushik, Y.H. Kim, Y.G. Han, E.H. Choi, Curr. Appl. Phys. 13, 614 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Ratovitski, et al., Plasma Process. Polym. 11, 1128 (2014)CrossRefGoogle Scholar
  24. 24.
    D.B. Graves, Plasma Process. Polym. 11, 1120 (2014)CrossRefGoogle Scholar
  25. 25.
    N. Barekzi, M. Laroussi, Plasma Process. Polym. 10, 1039 (2013)CrossRefGoogle Scholar
  26. 26.
    D.B. Graves, J. Phys. D 45, 263001 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    R. Brandenburg, et al., Contrib. Plasma Phys. 54, 202 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, M. Arai, Renew. Sustain. Energy Rev. 40, 886 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Rudolph, K.P. Francke, H. Miessner, Plasmas Polym. 8, 153 (2003)CrossRefGoogle Scholar
  30. 30.
    R. Hackam, H. Akiyama, IEEE Trans. Dielectr. Electr. Insul. 7, 654 (2000)CrossRefGoogle Scholar
  31. 31.
    G. Isbary, et al., Expert Rev. Med. Devices 10, 367 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Bruggeman, R. Brandenburg, J. Phys. D 46, 464001 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    J. Jeon et al., Plasma Process. Polym. 11, 426 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Shimizu et al., Planet Space Sci. 90, 60 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    T. Shimizu, Y. Sakiyama, D.B. Graves, J.L. Zimmermann, G.E. Morfill, New J. Phys. 14, 103028 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Sakiyama, D.B. Graves, Chang H-W, T. Shimizu, G.E. Morfill, J. Phys. D Appl. Phys. 45, 425201 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    J. Heinlin et al., Future Microbiol. 8, 1097 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Oehmigen et al., Plasma Process. Polym. 8, 904 (2011)CrossRefGoogle Scholar
  39. 39.
    K. Oehmigen, M. Haehnel, R. Brandenburg, C. Wilke, K.D. Weltmann, T. von Woedtke, Plasma Process. Polym. 7, 250 (2010)CrossRefGoogle Scholar
  40. 40.
    M.J. Pavlovich, D.S. Clark, D.B. Graves, Plasma Sources Sci. Technol. 23, 065036 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci. 33, 310 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    J.S. Sousa, K. Niemi, L.J. Cox, Q.T. Algwari, T. Gans, D. O’Connell, J. Appl. Phys. 109, 123302 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    M.Y. Alkawareek et al., Plos One 7, e44289 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    K. Fricke, S. Reuter, D. Schroeder, V. Schulz-von der Gathen, K.-D. Weltmann, T. von Woedtke, IEEE Trans. Plasma Sci. 40, 2900 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    K. Fricke et al., IEEE Trans. Plasma Sci. 40, 2970 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    K. Fricke et al., Plos One 7, e42539 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    K. Fricke, H. Tresp, R. Bussiahn, K. Schroeder, T. von Woedtke, K.D. Weltmann, Plasma Chem. Plasma Process. 32, 801 (2012)CrossRefGoogle Scholar
  48. 48.
    K. Fricke, H. Steffen, T. von Woedtke, K. Schroeder, K.-D. Weltmann, Plasma Process. Polym. 8, 51 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Reuter, J. Winter, A. Schmidt-Bleker, H. Tresp, M.U. Hammer, K.-D. Weltmann, IEEE Trans. Plasma Sci. 40, 2788 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    S. Reuter, et al., IEEE Trans. Plasma Sci. 40, 2986 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    E.A.J. Bartis, P. Luan, A.J. Knoll, C. Hart, J. Seog, G.S. Oehrlein, Biointerphases 10, 029512 (2015)CrossRefGoogle Scholar
  52. 52.
    W. Tian, M.J. Kushner, J. Phys. D 47, 165201 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    J. Winter et al., J. Phys. D 47, 224001 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    K.Y. Baik et al., Plasma Process. Polym. 10, 235 (2013)CrossRefGoogle Scholar
  55. 55.
    C.A.J. van Gils, S. Hofmann, B.K.H.L. Boekema, R. Brandenburg, P.J. Bruggeman, J. Phys. D 46, 175203 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    D. Dobrynin, A. Fridman, A.Y. Starikovskiy, IEEE Trans. Plasma Sci. 40, 2163 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    A. Starikovskiy, Y. Yang, Y.I. Cho, A. Fridman, Plasma Sources Sci. Technol. 20, 024003 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    P. Bruggeman, C. Leys, J. Phys. D 42, 053001 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    E.A.J. Bartis, P. Luan, A.J. Knoll, D.B. Graves, J. Seog, G.S. Oehrlein, Plasma Process. Polym. (2015)Google Scholar
  60. 60.
    E.A.J. Bartis, et al., J. Phys. D 47, 045202 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    C. Erridge, E. Bennett-Guerrero, I.R. Poxton, Microbes Infect. 4, 837 (2002)CrossRefGoogle Scholar
  62. 62.
    W. Vollmer, D. Blanot, M.A. de Pedro, FEMS Microbiol. Rev. 32, 149 (2008)CrossRefGoogle Scholar
  63. 63.
    B. Fournier, D.J. Philpott, Clin. Microbiol. Rev. 18, 521 (2005)CrossRefGoogle Scholar
  64. 64.
    Y.S. Lo, N.D. Huefner, W.S. Chan, P. Dryden, B. Hagenhoff, T.P. Beebe, Langmuir 15, 6522 (1999)CrossRefGoogle Scholar
  65. 65.
    T. Shimizu, J.L. Zimmermann, G.E. Morfill, New J. Phys. 13, 023026 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    A.J. Knoll, P. Luan, E.A.J. Bartis, C. Hart, Y. Raitses, G.S. Oehrlein, Appl. Phys. Lett. 105, 171601 (2014)ADSCrossRefGoogle Scholar
  67. 67.
    D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge University Press, Cambridge, 1998)Google Scholar
  68. 68.
    J.H. Scofield, J. Electron. Spectrosc. Relat. Phenom. 8, 129 (1976)CrossRefGoogle Scholar
  69. 69.
    J.S. Sousa, G. Bauville, B. Lacour, V. Puech, M. Touzeau, Eur. Phys. J. 47, 22807 (2009)Google Scholar
  70. 70.
    S. Schneider et al., Plasma Process. Polym. 9, 561 (2012)CrossRefGoogle Scholar
  71. 71.
    S. Schneider, J.W. Lackmann, F. Narberhaus, J.E. Bandow, B. Denis, J. Benedikt, J. Phys. D 44, 295201 (2011)CrossRefGoogle Scholar
  72. 72.
    T.-Y. Chung, et al., Plasma Process. Polym. 10, 167 (2013)CrossRefGoogle Scholar
  73. 73.
    F. Weilnboeck et al., J. Vac. Sci. Technol. B 28, 993 (2010)CrossRefGoogle Scholar
  74. 74.
    F.E. Truica-Marasescu, M.R. Wertheimer, Macromol. Chem. Phys. 206, 744 (2005)CrossRefGoogle Scholar
  75. 75.
    R. Wilken, A. Hollander, J. Behnisch, Plasmas Polym. 7, 185 (2002)CrossRefGoogle Scholar
  76. 76.
    A. Hollander, J. Behnisch, Surf. Coat. Technol. 98, 855 (1998)CrossRefGoogle Scholar
  77. 77.
    A.N. Bhoj, M.J. Kushner, J. Phys. D 40, 6953 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    J.F. Rabek, Photodegradation of Polymers (Springer-Verlag, New York, 1996)Google Scholar
  79. 79.
    B.S. Park, D.H. Song, H.M. Kim, B.-S. Choi, H. Lee, J.-O. Lee, Nature 458, 1191 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    E. Vogli, D. Metzler, G.S. Oehrlein, Appl. Phys. Lett. 102, 253105 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    F. Weilnboeck, et al., J. Vac. Sci. Technol. B 30, 031807 (2012)CrossRefGoogle Scholar
  82. 82.
    G.S. Oehrlein, R.J. Phaneuf, D.B. Graves, J. Vac. Sci. Technol. B 29, 010801 (2011)CrossRefGoogle Scholar
  83. 83.
    R.L. Bruce, et al., J. Appl. Phys. 107, 084301 (2010)ADSCrossRefGoogle Scholar
  84. 84.
    R.L. Bruce et al., J. Vac. Sci. Technol. B 27, 1142 (2009)CrossRefGoogle Scholar
  85. 85.
    G. Fauland, F. Constantin, H. Gaffar, T. Bechtold, J. Appl. Polym. Sci. 132, 41294 (2015)CrossRefGoogle Scholar
  86. 86.
    A. Chiper, G. Borcia, Plasma Chem. Plasma Process. 33, 553 (2013)CrossRefGoogle Scholar
  87. 87.
    M. Donegan, V. Milosavljevic, D.P. Dowling, Plasma Chem. Plasma Process. 33, 941 (2013)CrossRefGoogle Scholar
  88. 88.
    K.G. Doherty et al., Plasma Process. Polym. 10, 978 (2013)CrossRefGoogle Scholar
  89. 89.
    G.-L. Chen, et al., Chin. Phys. B 22 (2013)Google Scholar
  90. 90.
    T. Homola, J. Matousek, B. Hergelova, M. Kormunda, L.Y.L. Wu, M. Cernak, Polym. Degrad. Stab. 97, 886 (2012)CrossRefGoogle Scholar
  91. 91.
    D. Pappas, J. Vac. Sci. Technol. A 29, 020801 (2011)CrossRefGoogle Scholar
  92. 92.
    N. Hogg, B. Kalyanaraman, Biochim. Biophys. Acta 1411, 378 (1999)CrossRefGoogle Scholar
  93. 93.
    V.M. Darleyusmar, N. Hogg, V.J. Oleary, M.T. Wilson, S. Moncada, Free Rad. Res. Commun. 17, 9 (1992)CrossRefGoogle Scholar
  94. 94.
    D.F. Church, W.A. Pryor, Environ. Health Perspect. 64, 111 (1985)CrossRefGoogle Scholar
  95. 95.
    S. Gross, A.K. Bertram, J. Geophys. Res. Atm. 114, D02307 (2009)ADSCrossRefGoogle Scholar
  96. 96.
    S. Gross, A.K. Bertram, J. Phys. Chem. A 112, 3104 (2008)CrossRefGoogle Scholar
  97. 97.
    I. Stefanovic, N.K. Bibinov, A.A. Deryugin, I.P. Vinogradov, A.P. Napartovich, K. Wiesemann, Plasma Sources Sci. Technol. 10, 406 (2001)ADSCrossRefGoogle Scholar
  98. 98.
    U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)CrossRefGoogle Scholar
  99. 99.
    S. Iseni, S. Reuter, K.-D. Weltmann, J. Phys. D 47, 075203 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    A.F.H. van Gessel, B. Hrycak, M. Jasinski, J. Mizeraczyk, J.J.A.M. van der Mullen, P.J. Bruggeman, J. Phys. D 46, 095201 (2013)ADSCrossRefGoogle Scholar
  101. 101.
    B.T.J. van Ham, S. Hofmann, R. Brandenburg, P.J. Bruggeman, J. Phys. D 47, 224013 (2014)ADSCrossRefGoogle Scholar
  102. 102.
    W.A. Pryor, G.L. Squadrito, Am. J. Physiol.-Lung. Cell Mol. Phys. 268, L699 (1995)Google Scholar
  103. 103.
    D.H. Xu, et al., Plos One 10, e0128205 (2015)CrossRefGoogle Scholar
  104. 104.
    P.R. Ogilby, Chem. Soc. Rev. 39, 3181 (2010)CrossRefGoogle Scholar
  105. 105.
    W. Van Gaens, A. Bogaerts, Plasma Sources Sci. Technol. 23, 035013 (2014)ADSCrossRefGoogle Scholar
  106. 106.
    R. Wilken, A. Hollander, J. Behnisch, Surf. Coat. Technol. 116, 991 (1999)CrossRefGoogle Scholar
  107. 107.
    R. Wilken, A. Hollander, J. Behnisch, Macromolecules 31, 7613 (1998)ADSCrossRefGoogle Scholar
  108. 108.
    B.E.E. Kastenmeier, P.J. Matsuo, G.S. Oehrlein, R.E. Ellefson, L.C. Frees, J. Vac. Sci. Technol. A 19, 25 (2001)ADSCrossRefGoogle Scholar
  109. 109.
    B.E.E. Kastenmeier, P.J. Matsuo, J.J. Beulens, G.S. Oehrlein, J. Vac. Sci. Technol. A 14, 2802 (1996)ADSCrossRefGoogle Scholar
  110. 110.
    J. Van der Paal, C.C. Verlackt, M. Yusupov, E.C. Neyts, A. Bogaerts, J. Phys. D 48, 155202 (2015)ADSCrossRefGoogle Scholar
  111. 111.
    M. Yusupov, A. Bogaerts, S. Huygh, R. Snoeckx, A.C.T. van Duin, E.C. Neyts, J. Phys. Chem. C 117, 5993 (2013)CrossRefGoogle Scholar
  112. 112.
    M. Yusupov, E.C. Neyts, U. Khalilov, R. Snoeckx, A.C.T. van Duin, A. Bogaerts, New J. Phys. 14, 093043 (2012)ADSCrossRefGoogle Scholar
  113. 113.
    M. Yusupov, E.C. Neyts, C.C. Verlackt, U. Khalilov, A.C.T. van Duin, A. Bogaerts, Plasma Process. Polym. 12, 162 (2014)CrossRefGoogle Scholar
  114. 114.
    J. Van der Paal, S. Aernouts, A.C.T. van Duin, E.C. Neyts, A. Bogaerts, J. Phys. D 46, 395201 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    A. Bogaerts, M. Yusupov, J. Van der Paal, C.C.W. Verlackt, E.C. Neyts, Plasma Process. Polym. 11, 1156 (2014)CrossRefGoogle Scholar
  116. 116.
    Y. Zhang, R.C. Chapleski, J.W. Lu, T.H. Rockhold, D. Troya, J.R. Morris, Phys. Chem. Chem. Phys. 16, 16659 (2014)CrossRefGoogle Scholar
  117. 117.
    E. Grosjean, D. Grosjean, J.H. Seinfeld, Environ. Sci. Technol. 30, 1038 (1996)ADSCrossRefGoogle Scholar
  118. 118.
    I.J. George, J.P.D. Abbatt, Nat. Chem. 2, 713 (2010)CrossRefGoogle Scholar
  119. 119.
    R. Dorai, M.J. Kushner, J. Phys. D 36, 666 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elliot A.J. Bartis
    • 1
    • 2
  • Pingshan Luan
    • 1
    • 2
  • Andrew J. Knoll
    • 1
    • 2
  • David B. Graves
    • 3
  • Joonil Seog
    • 1
  • Gottlieb S. Oehrlein
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of MarylandCollege ParkUSA
  2. 2.Institute for Research in Electronics and Applied Physics, University of MarylandCollege ParkUSA
  3. 3.Department of Chemical and Biomolecular Engineering, University of CaliforniaBerkeleyUSA

Personalised recommendations