Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

  • Zhi Fang
  • Tao ShaoEmail author
  • Jing Yang
  • Cheng Zhang
Regular Article
Part of the following topical collections:
  1. Recent Breakthroughs in Microplasma Science and Technology


In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model.

Graphical abstract


Applied Voltage Corona Discharge Dielectric Barrier Discharge Plasma Channel Dielectric Barrier Discharge Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Bárdos, L. Baránková, Thin Solid Films 318, 6705 (2010)CrossRefGoogle Scholar
  2. 2.
    K.D. Weltmann, E. Kindel, T. von Woedtke, M.L. Hähnel, M. Stieber, R. Brandenburg, Pure Appl. Chem. 82, 1223 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Laroussi, T. Akan, Plasma Process. Polym. 4, 777 (2007)CrossRefGoogle Scholar
  4. 4.
    F. Iza, G.J. Kim, S.M. Lee, J.K. Lee, J.L. Walsh, Y.T. Zhang, M.G. Kong, Plasma Process. Polym. 5, 322 (2008)CrossRefGoogle Scholar
  5. 5.
    G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Plasma Process. Polym. 5, 503 (2008)CrossRefGoogle Scholar
  6. 6.
    D. Pappas, J. Vac. Sci. Technol. A 29, 020801 (2011)CrossRefGoogle Scholar
  7. 7.
    X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D 44, 053001 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Walsh, F. Iza, N.B. Janson, V.J. Law, M.G. Kong, J. Phys. D 43, 75201 (2010)CrossRefGoogle Scholar
  10. 10.
    S.J. Kim, T.H. Chung, S.H. Bae, Thin Solid Films 517, 14, 4251 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M.Y. Qian, C.S. Ren, D.Z. Wang, Q.Q. Fan, Q.Y. Nie, IEEE Trans. Plasma Sci. 40, 1134 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Xian, X. Lu, Z. Tang, Q. Xiong, W. Gong, D. Liu, Z. Jiang, Y. Pan, J. Appl. Phys. 107, 063308 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S.J. Kim, T.H. Chung, S.H. Bae, Thin Solid Films 517, 4251 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A.Y. Nikiforov, A. Sarani, C. Leys, Plasma Sources Sci. Technol. 20, 015014 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Mohamed, K.C. Woo, H.W. Lee, J.K. Lee, K.T. Kim, IEEE Trans. Plasma Sci. 38, 2954 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A. Kuwabara, S. Kuroda, H. Kubota, Plasma Chem. Plasma Process. 28, 263 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Haslinger, J. Laimer, H. Stori, Vacuum 82, 142 (2008)CrossRefADSGoogle Scholar
  18. 18.
    C. Monge-Dauge, F. Clement, P. Svarnas, IEEE Trans. Plasma Sci. 40, 2254 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S.Z. Li, W.T. Huang, J.L. Zhang, D.Z. Wang, Appl. Phys. Lett. 94, 111501 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    O. Koudriavtsev, S. Wang, Y. Konishi, M. Nakaoka, IEEE Trans. Ind. Appl. 38, 369 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Liu, M. Neiger, J. Phys. D 36, 3144 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    N. Naudé, J.-P. Cambronne, N. Gherardi, F. Massines, J. Phys. D 38, 530 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    R. Valdivia-Barrientos, J. Pacheco-Sotel, M. Pacheco-Pacheco, J.S. Benítez-Read, R. López-Callejas, Plasma Sources Sci. Technol. 15, 237 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    U.N. Pal, P. Gulati, N. Kumar, R. Prakash, V. Srivastava, IEEE Trans. Plasma Sci. 40, 1356 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Fang, S. Ji, J. Pan, T. Shao, C. Zhang, IEEE Trans. Plasma Sci. 40, 883 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Xian, X. Lu, Z. Tang, Q. Xiong, W. Gong, D. Liu, Z. Jiang, Y. Pan, J. Appl. Phys. 107, 063308 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S.Z. Li, J.P. Lim, H.S. Uhm, Phys. Lett. A 360, 304 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    H. Akamatsu, K. Ichikawa, Surf. Coat. Technol. 206, 920 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Coulombe, V. Léveillé, S. Yonson, R.L. Leask, Pure Appl. Chem. 78, 1147 (2006)CrossRefGoogle Scholar
  30. 30.
    Z. Hao, S. Ji, A. Qiu, IEEE Trans. Plasma Sci. 40, 2822 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Hong, N. Lu, J. Pan, J. Li, Y. Wu, Thin Solid Films 531, 408 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Hong, N. Lu, J. Pan, J. Li, Y. Wu, K.F. Shang, J. Electrostat. 71, 93 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Radu, R. Bartnikas, M.R. Wertheimer, J. Phys. D 36, 1284 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Yu. S. Akishev, A.V. Demyanov, V.B. Karalnik, A.E. Monich, N.I. Trushkin, Plasma Phys. Rep. 29, 82 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M. Abdel-Salam, A. Hashem, A. Yehia, A. Mizuno, A. Turky, A. Gabr, J. Phys. D 36, 252 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Yu. S. Akishev, A.V. Demyanov, V.B. Karalnik, M.V. Pankin, N.I. Trushkin, Plasma Phys. Rep. 27, 164 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    X. Tu, B. Verheyde, Corthals, S. Paulussen, B.F. Sels, Phys. Plasmas 18, 080702 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    L. Mangolini, K. Orlov, U. Kortshagen, J. Heberlein, U. Kogelschatz, Appl. Phys. Lett. 80, 1722 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Electrical Engineering and Control Science, Nanjing Tech TechnologyNanjingP.R. China
  2. 2.Institute of Electrical Engineering, Chinese Academy of SciencesBeijingP.R. China
  3. 3.Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations