Advertisement

Multihump solitons in two-dimensional parity-time-symmetric optical lattices with focusing saturable nonlinearity

  • Xing Zhu
  • Huagang LiEmail author
Regular Article

Abstract

We study the existence and stability of multihump solitons in two-dimensional (2D) parity-time (PT)-symmetric periodic potentials with focusing saturable nonlinearity. All the humps of these solitons are in consecutive lattice sites and the adjacent two humps are out-of-phase. These multihump solitons exist in finite regions in the semi-infinite gap and cannot bifurcate from the edge of the first Bloch band. They can be stable in the moderate power region. It is found that the saturation parameter will affect the existence and stability of these multihump gap solitons significantly. The transverse power flow vector in these 2D multihump solitons in focusing saturable media is also investigated.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    N.K. Efremidis, J. Hudock, D.N. Christodoulides, J.W. Fleischer, O. Cohen, M. Segev, Phys. Rev. Lett. 91, 213906 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Y.V. Kartashov, V.A. Vysloukh, L. Torner, Opt. Express 12, 2831 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J. Yang, New J. Phys. 6, 47 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Yang, Z. Chen, Phys. Rev. E 73, 026609 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Y. He, W. Chen, H. Wang, B.A. Malomed, Opt. Lett. 32, 1390 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T.J. Alexander, A.S. Desyatnikov, Y.S. Kivshar, Opt. Lett. 32, 1293 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Wang, J. Yang, Phys. Rev. A 77, 033834 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    K.J.H. Law, H. Susanto, P.G. Kevrekidis, Phys. Rev. A 78, 033802 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    K.J.H. Law, A. Saxena, P.G. Kevrekidis, A.R. Bishop, Phys. Rev. A 79, 053818 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    X. Zhu, H. Wang, L. Zheng, Opt. Express 18, 20786 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodoulides, Nature 422, 147 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Rosberg, D.N. Neshev, A.A. Sukhorukov, W. Krolikowski, Y.S. Kivshar, Opt. Lett. 32, 397 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, D.N. Christodoulides, Phys. Rev. Lett. 98, 103901 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Yang, I. Makasyuk, A. Bezryadina, Z. Chen, Stud. Appl. Math. 113: 389 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Z. Chen, A. Bezryadina, I. Makasyuk, J. Yang, Opt. Lett. 29, 1656 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, I. Makasyuk, Z. Chen, Phys. Rev. lett. 92, 123903 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D.N. Christodoulides, Phys. Rev. Lett. 92, 123904 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    G. Bartal, O. Manela, O. Cohen, J.W. Fleischer, M. Segev, Phys. Rev. Lett. 95, 053904 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    C. Lou, X. Wang, J. Xu, Z. Chen, J. Yang, Phys. Rev. Lett. 98, 213903 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    J. Yang, Z.H. Musslimani, Opt. Lett. 28, 2094 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Z.H. Musslimani, J. Yang, J. Opt. Soc. Am. B 21, 973 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Z.H. Musslimani, M. Segev, D.N. Christodoulides, M. Soljačić, Phys. Rev. Lett. 84, 1164 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Z.H. Musslimani, K.G. Makris, R. EI-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S.V. Dmitriev, A.A. Sukhorukov, Y.S. Kivshar, Opt. Lett. 35, 2976 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    X. Zhu, H. Wang, L. Zheng, H. Li, Y. He, Opt. Lett. 36, 2680 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Driben, B.A. Malomed, Opt. Lett. 36, 4323 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    F.K. Abdullaev, Y.V. Kartashov, V.V. Konotop, D.A. Zezyulin, Phys. Rev. A 83, 041805 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Y. He, X. Zhu, D. Mihalache, J. Liu, Z. Chen, Phys. Rev. A 85, 013831 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    H. Li, Z. Shi, X. Jiang, X. Zhu, Opt. Lett. 36, 3290 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Nixon, L. Ge, J. Yang, Phys. Rev. A 85, 023822 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    S. Hu, X. Ma, D. Lu, Y. Zheng, W. Hu, Phys. Rev. A 85, 043826 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    H. Li, X. Jiang, X. Zhu, Z. Shi, Phys. Rev. A 86, 023840 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Shi, H. Li, X. Zhu, X. Jiang, Europhys. Lett. 98, 64006 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    C. Li, C. Huang, H. Liu, L. Dong, Opt. Lett. 37, 4543 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    J. Zeng, Y. Lan, Phys. Rev. E 85, 047601 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    X. Zhu, H. Li, H. Wang, Y. He, J. Opt. Soc. Am. B 30, 1987 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    B. Midya, R. Roychoudhury, Phys. Rev. A 87, 045803 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Y.V. Kartashov, Opt. Lett. 38, 2600 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    X. Zhu, H. Wang, H. Li, W. He, Y. He, Opt. Lett. 38, 2723 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    C.P. Jisha, A. Alberucci, V.A. Brazhnyi, G. Assanto, Phys. Rev. A 89, 013812 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    X. Zhu, P. Cao, L. Song, Y. He, H. Li, J. Opt. Soc. Am. B 31, 2109 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    H. Li, X. Zhu, Z. Shi, B.A. Malomed, T. Lai, C. Lee, Phys. Rev. A 89, 053811 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    H. Wang, S. Shi, X. Ren, X. Zhu, B.A. Malomed, D. Mihalache, Y. He, Opt. Commun. 335, 146 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)MathSciNetCrossRefGoogle Scholar
  47. 47.
    C.E. Rüter, K.G. Makris, R. EI-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Nature 488, 167 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    C. Hang, G. Huang, V.V. Konotop, Phys. Rev. Lett. 110, 083604 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    M.J. Ablowitz, Z.H. Musslimani, Phys. Rev. Lett. 110, 064105 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    M.J. Ablowitz, Z.H. Musslimani, Opt. Lett. 30, 2140 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    J. Yang, T.I. Lakoba, Stud. Appl. Math. 118, 153 (2007)MathSciNetCrossRefGoogle Scholar
  53. 53.
    J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsGuangdong University of EducationGuangzhouP.R. China
  2. 2.State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations