Advertisement

Refraction of light by light in vacuum

  • Xavier SarazinEmail author
  • François Couchot
  • Arache Djannati-Ataï
  • Olivier Guilbaud
  • Sophie Kazamias
  • Moana Pittman
  • Marcel Urban
Regular Article

Abstract

In very intense electromagnetic fields, the vacuum refractive index is expected to be modified due to nonlinear quantum electrodynamics (QED) properties. Several experimental tests using high intensity lasers have been proposed to observe electromagnetic nonlinearities in vacuum, such as the diffraction or the reflection of intense laser pulses. We propose a new approach which consists in observing the refraction, i.e. the rotation of the waveplanes of a probe laser pulse crossing a transverse vacuum index gradient. The latter is produced by the interaction of two very intense and ultra short laser pulses, used as pump pulses. At the maximum of the index gradient, the refraction angle of the probe pulse is estimated to be 0.2 × (w 0/10 μm)-3 × I/1J prad, where I is the total energy of the two pump pulses and w 0 is the minimum waist (fwhm) at the interaction area. Assuming the most intense laser pulses attainable by the LASERIX facility (I = 25 J, 30 fs fwhm duration, 800 nm central wavelength) and assuming a minimum waist of w = 10 μm (fwhm) (corresponding to an intensity of the order of 1021 W/cm2), the expected maximum refraction angle is about 5 prad. An experimental setup, using a Sagnac interferometer, is proposed to perform this measurement.

Graphical abstract

Keywords

Ultraintense and Ultra-short Laser Fields 

References

  1. 1.
    H. Euler, Ann. Phys. Leipzig 26, 398 (1936)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)ADSCrossRefGoogle Scholar
  3. 3.
    R. Battesti, C. Rizzo, Rep. Prog. Phys. 76, 016401 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Cadène et al., Eur. Phys. J. D 68, 16 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    F. Della Valle et al., Phys. Rev. D 90, 092003 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    D. Tommasini, H. Michinel, Phys. Rev. A 82, 011803 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B. King, C.H. Keitel, New J. Phys. 14, 103002 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Di Piazza et al., Phys. Rev. Lett. 97, 083603 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    H. Gies et al., New J. Phys. 15, 083002 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    H. Gies et al., New J. Phys. 17, 043060 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    R.V. Jones, Nature 186, 706 (1960)ADSCrossRefGoogle Scholar
  12. 12.
    R.V. Jones, Proc. Roy. Soc. London Ser. A 260, 47 (1961)ADSCrossRefGoogle Scholar
  13. 13.
    F. Ple et al., Opt. Lett. 32, 238 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Soljacic, M. Segev, Phys. Rev. A 62, 043817 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    S.G. Mamaev et al., Sov. J. Nucl. Phys. 33, 569 (1981)Google Scholar
  16. 16.
    P. Lorrain, Opt. Lasers Eng. 15, 197 (1991)CrossRefGoogle Scholar
  17. 17.
    P. B. Dixon et al., Phys. Rev. Lett. 102, 173601 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M.D. Turner et al., Opt. Lett. 36, 1479 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xavier Sarazin
    • 1
    Email author
  • François Couchot
    • 1
  • Arache Djannati-Ataï
    • 2
  • Olivier Guilbaud
    • 3
  • Sophie Kazamias
    • 3
  • Moana Pittman
    • 4
  • Marcel Urban
    • 1
  1. 1.LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-SaclayOrsayFrance
  2. 2.APC, IN2P3/CNRS, Université Paris DiderotParisFrance
  3. 3.LPGP, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance
  4. 4.CLUPS/LUMAT, Univ. Paris-Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations