Advertisement

Nearby states in non-Hermitian quantum systems I: Two states

  • Hichem Eleuch
  • Ingrid RotterEmail author
Regular Article

Abstract

The formalism for the description of open quantum systems (that are embedded into a common well-defined environment) by means of a non-Hermitian Hamilton operator ℋ is sketched. Eigenvalues and eigenfunctions are parametrically controlled. Using a 2 × 2 model, we study the eigenfunctions of ℋ at and near to the singular exceptional points (EPs) at which two eigenvalues coalesce and the corresponding eigenfunctions differ from one another by only a phase. Nonlinear terms in the Schrödinger equation appear nearby EPs which cause a mixing of the wavefunctions in a certain finite parameter range around the EP. The phases of the eigenfunctions jump by π at an EP. These results hold true for systems that can emit (“loss”) particles into the environment of scattering wavefunctions as well as for systems which can moreover absorb (“gain”) particles from the environment. In a parameter range far from an EP, open quantum systems are described well by a Hermitian Hamilton operator. The transition from this parameter range to that near to an EP occurs smoothly.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    M. Avinun-Kalish, M. Heiblum, O. Zarchin, D. Mahalu, V. Umansky, Nature 436, 529 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Focus on Interference in Mesoscopic Systems, New J. Phys. 9 (2007)Google Scholar
  3. 3.
    G. Hackenbroich, Phys. Rep. 343, 463 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M. Müller, I. Rotter, Phys. Rev. A 80, 042705 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124, 194507 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    H.M. Pastawski, Physica B 398, 278 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Lee, J.E. Han, S. Xiao, J. Song, J.L. Reno, J.B. Bird, Nat. Nanotechnol. 9, 101 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    M. Cahay, Nat. Nanotechnol. 9, 97 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    I. Rotter, Rep. Prog. Phys. 54, 635 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    I. Rotter, J. Phys. A 42, 153001 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, 2011)Google Scholar
  12. 12.
    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Yoon, M.G. Kang, T. Morimoto, M. Kida, N. Aoki, J.L. Reno, Y. Ochiai, L. Mourokh, J. Fransson, J.P. Bird, Phys. Rev. X 2, 021003 (2012)Google Scholar
  14. 14.
    C. Jung, M. Müller, I. Rotter, Phys. Rev. E 60, 114 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A. Biella, F. Borgonovi, R. Kaiser, G.L. Celardo, Europhys. Lett. 103, 57009 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R.H. Dicke, Phys. Rev. 93, 99 (1954)ADSCrossRefGoogle Scholar
  17. 17.
    G.L. Celardo, F. Borgonovi, M. Merkli, V.I. Tsifrinovich, G.P. Berman, J. Phys. Chem. C 116, 22105 (2012)CrossRefGoogle Scholar
  18. 18.
    T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966)Google Scholar
  19. 19.
    A.I. Magunov, I. Rotter, S.I. Strakhova, J. Phys. B 32, 1669 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    A.I. Magunov, I. Rotter, S.I. Strakhova, J. Phys. B 34, 29 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    E.N. Bulgakov, I. Rotter, A.F. Sadreev, Phys. Rev. E 74, 056204 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    E.N. Bulgakov, I. Rotter, A.F. Sadreev, Phys. Rev. B 76, 214302 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    I. Rotter, A.F. Sadreev, Phys. Rev. E 71, 036227 (2005)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    I. Rotter, A.F. Sadreev, Phys. Rev. E 71, 046204 (2005)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.C. Toroker, U. Peskin, J. Phys. B 42, 044013 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    W.D. Heiss, M. Müller, I. Rotter, Phys. Rev. E 58, 2894 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    C.M. Bender, Rep. Progr. Phys. 70, 947 (2007)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    C.E. Rüter, G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  30. 30.
    T. Kottos, Nat. Phys. 6, 166 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Schindler, Z. Lin, J.M. Lee, H. Ramezani, F.M. Ellis, T. Kottos, J. Phys. A 45, 444029 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    I. Rotter, J. Opt. 12, 065701 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    H. Eleuch, I. Rotter, Acta Polytechnica 54, 106 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Eleuch, I. Rotter, Int. J. Theor. Phys. (2015), DOI:  10.1007/s10773-014-2375-3
  35. 35.
    B. Wahlstrand, I.I. Yakimenko, K.F. Berggren, Phys. Rev. E 89, 062910 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Y.N. Joglekar, C. Thompson, D.D. Scott, G. Vemuri, Eur. Phys. J. Appl. Phys. 63, 30001 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    C.M. Bender, M. Gianfreda, S.K. Özdemir, B. Peng, L. Yang, Phys. Rev. A 88, 062111 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    B. Peng, S.K. Özdemir, F.C. Lei, F. Monifi, M. Gianfreda, G.L. Long, S.H. Fan, F. Nori, C.M. Bender, L. Yang, Nat. Phys. 10, 394 (2014)CrossRefGoogle Scholar
  39. 39.
    B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang, Science 346, 328 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    A. Ruschhaupt, F. Delgado, J.G. Muga, J. Phys. A 38, L171 (2005)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Opt. Lett. 32, 2632 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    H. Eleuch, I. Rotter, Eur. Phys. J. D 69, 230 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    H. Feshbach, Ann. Phys. 5, 357 (1958)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    H. Feshbach, Ann. Phys. 19, 287 (1962)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    H. Eleuch, I. Rotter, Phys. Rev. E 87, 052136 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    H. Eleuch, I. Rotter, Eur. Phys. J. D 68, 74 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    L. Landau, Physics Soviet Union 2, 46 (1932)Google Scholar
  50. 50.
    C. Zener, Proc. Royal Soc. London, Series A 137, 692 (1932)ADSCrossRefGoogle Scholar
  51. 51.
    I. Rotter, Fortschr. Phys. Special Issue 61, 178 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    I. Rotter, Phys. Rev. E 68, 016211 (2003)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Müller, F.M. Dittes, W. Iskra, I. Rotter, Phys. Rev. E 52, 5961 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    I. Rotter, Phys. Rev. E 64, 036213 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    J. von Neumann, E. Wigner, Phys. Zeitschr. 30, 465 (1929)Google Scholar
  56. 56.
    H. Friedrich, D. Wintgen, Phys. Rev. A 31, 3964 (1985)ADSCrossRefGoogle Scholar
  57. 57.
    H. Friedrich, D. Wintgen, Phys. Rev. A 32, 3231 (1985)ADSCrossRefGoogle Scholar
  58. 58.
    I. Rotter, J.P. Bird, Rep. Prog. Phys. 78 (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsMcGill UniversityMontrealCanada
  2. 2.Max Planck Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations