Skip to main content
Log in

Nearby states in non-Hermitian quantum systems I: Two states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The formalism for the description of open quantum systems (that are embedded into a common well-defined environment) by means of a non-Hermitian Hamilton operator ℋ is sketched. Eigenvalues and eigenfunctions are parametrically controlled. Using a 2 × 2 model, we study the eigenfunctions of ℋ at and near to the singular exceptional points (EPs) at which two eigenvalues coalesce and the corresponding eigenfunctions differ from one another by only a phase. Nonlinear terms in the Schrödinger equation appear nearby EPs which cause a mixing of the wavefunctions in a certain finite parameter range around the EP. The phases of the eigenfunctions jump by π at an EP. These results hold true for systems that can emit (“loss”) particles into the environment of scattering wavefunctions as well as for systems which can moreover absorb (“gain”) particles from the environment. In a parameter range far from an EP, open quantum systems are described well by a Hermitian Hamilton operator. The transition from this parameter range to that near to an EP occurs smoothly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Avinun-Kalish, M. Heiblum, O. Zarchin, D. Mahalu, V. Umansky, Nature 436, 529 (2005)

    Article  ADS  Google Scholar 

  2. Focus on Interference in Mesoscopic Systems, New J. Phys. 9 (2007)

  3. G. Hackenbroich, Phys. Rep. 343, 463 (2001)

    Article  ADS  Google Scholar 

  4. M. Müller, I. Rotter, Phys. Rev. A 80, 042705 (2009)

    Article  ADS  Google Scholar 

  5. G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124, 194507 (2006)

    Article  ADS  Google Scholar 

  6. H.M. Pastawski, Physica B 398, 278 (2007)

    Article  ADS  Google Scholar 

  7. J. Lee, J.E. Han, S. Xiao, J. Song, J.L. Reno, J.B. Bird, Nat. Nanotechnol. 9, 101 (2014)

    Article  ADS  Google Scholar 

  8. M. Cahay, Nat. Nanotechnol. 9, 97 (2014)

    Article  ADS  Google Scholar 

  9. I. Rotter, Rep. Prog. Phys. 54, 635 (1991)

    Article  ADS  Google Scholar 

  10. I. Rotter, J. Phys. A 42, 153001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, 2011)

  12. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  13. Y. Yoon, M.G. Kang, T. Morimoto, M. Kida, N. Aoki, J.L. Reno, Y. Ochiai, L. Mourokh, J. Fransson, J.P. Bird, Phys. Rev. X 2, 021003 (2012)

    Google Scholar 

  14. C. Jung, M. Müller, I. Rotter, Phys. Rev. E 60, 114 (1999)

    Article  ADS  Google Scholar 

  15. A. Biella, F. Borgonovi, R. Kaiser, G.L. Celardo, Europhys. Lett. 103, 57009 (2013)

    Article  ADS  Google Scholar 

  16. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  17. G.L. Celardo, F. Borgonovi, M. Merkli, V.I. Tsifrinovich, G.P. Berman, J. Phys. Chem. C 116, 22105 (2012)

    Article  Google Scholar 

  18. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966)

  19. A.I. Magunov, I. Rotter, S.I. Strakhova, J. Phys. B 32, 1669 (1999)

    Article  ADS  Google Scholar 

  20. A.I. Magunov, I. Rotter, S.I. Strakhova, J. Phys. B 34, 29 (2001)

    Article  ADS  Google Scholar 

  21. E.N. Bulgakov, I. Rotter, A.F. Sadreev, Phys. Rev. E 74, 056204 (2006)

    Article  ADS  Google Scholar 

  22. E.N. Bulgakov, I. Rotter, A.F. Sadreev, Phys. Rev. B 76, 214302 (2007)

    Article  ADS  Google Scholar 

  23. I. Rotter, A.F. Sadreev, Phys. Rev. E 71, 036227 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Rotter, A.F. Sadreev, Phys. Rev. E 71, 046204 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.C. Toroker, U. Peskin, J. Phys. B 42, 044013 (2009)

    Article  ADS  Google Scholar 

  26. W.D. Heiss, M. Müller, I. Rotter, Phys. Rev. E 58, 2894 (1998)

    Article  ADS  Google Scholar 

  27. C.M. Bender, Rep. Progr. Phys. 70, 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  29. C.E. Rüter, G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  30. T. Kottos, Nat. Phys. 6, 166 (2010)

    Article  Google Scholar 

  31. J. Schindler, Z. Lin, J.M. Lee, H. Ramezani, F.M. Ellis, T. Kottos, J. Phys. A 45, 444029 (2012)

    Article  ADS  Google Scholar 

  32. I. Rotter, J. Opt. 12, 065701 (2010)

    Article  ADS  Google Scholar 

  33. H. Eleuch, I. Rotter, Acta Polytechnica 54, 106 (2014)

    Article  Google Scholar 

  34. H. Eleuch, I. Rotter, Int. J. Theor. Phys. (2015), DOI: 10.1007/s10773-014-2375-3

  35. B. Wahlstrand, I.I. Yakimenko, K.F. Berggren, Phys. Rev. E 89, 062910 (2014)

    Article  ADS  Google Scholar 

  36. Y.N. Joglekar, C. Thompson, D.D. Scott, G. Vemuri, Eur. Phys. J. Appl. Phys. 63, 30001 (2013)

    Article  ADS  Google Scholar 

  37. C.M. Bender, M. Gianfreda, S.K. Özdemir, B. Peng, L. Yang, Phys. Rev. A 88, 062111 (2013)

    Article  ADS  Google Scholar 

  38. B. Peng, S.K. Özdemir, F.C. Lei, F. Monifi, M. Gianfreda, G.L. Long, S.H. Fan, F. Nori, C.M. Bender, L. Yang, Nat. Phys. 10, 394 (2014)

    Article  Google Scholar 

  39. B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang, Science 346, 328 (2014)

    Article  ADS  Google Scholar 

  40. A. Ruschhaupt, F. Delgado, J.G. Muga, J. Phys. A 38, L171 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  42. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  43. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  44. H. Eleuch, I. Rotter, Eur. Phys. J. D 69, 230 (2015)

    Article  ADS  Google Scholar 

  45. H. Feshbach, Ann. Phys. 5, 357 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  46. H. Feshbach, Ann. Phys. 19, 287 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Eleuch, I. Rotter, Phys. Rev. E 87, 052136 (2013)

    Article  ADS  Google Scholar 

  48. H. Eleuch, I. Rotter, Eur. Phys. J. D 68, 74 (2014)

    Article  ADS  Google Scholar 

  49. L. Landau, Physics Soviet Union 2, 46 (1932)

    Google Scholar 

  50. C. Zener, Proc. Royal Soc. London, Series A 137, 692 (1932)

    Article  ADS  Google Scholar 

  51. I. Rotter, Fortschr. Phys. Special Issue 61, 178 (2013)

    Article  ADS  Google Scholar 

  52. I. Rotter, Phys. Rev. E 68, 016211 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Müller, F.M. Dittes, W. Iskra, I. Rotter, Phys. Rev. E 52, 5961 (1995)

    Article  ADS  Google Scholar 

  54. I. Rotter, Phys. Rev. E 64, 036213 (2001)

    Article  ADS  Google Scholar 

  55. J. von Neumann, E. Wigner, Phys. Zeitschr. 30, 465 (1929)

    Google Scholar 

  56. H. Friedrich, D. Wintgen, Phys. Rev. A 31, 3964 (1985)

    Article  ADS  Google Scholar 

  57. H. Friedrich, D. Wintgen, Phys. Rev. A 32, 3231 (1985)

    Article  ADS  Google Scholar 

  58. I. Rotter, J.P. Bird, Rep. Prog. Phys. 78 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Rotter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleuch, H., Rotter, I. Nearby states in non-Hermitian quantum systems I: Two states. Eur. Phys. J. D 69, 229 (2015). https://doi.org/10.1140/epjd/e2015-60389-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60389-7

Keywords

Navigation