Advertisement

Electron spectroscopy of strontium in the vicinity of the four-photon-excited 5p2 1S0 state

  • Anastasios Dimitriou
  • Samuel CohenEmail author
Regular Article
  • 66 Downloads

Abstract

We report on an electron energy analysis study conducted for the purpose of elucidating the single and double ionization pathways when ground state strontium atoms interact with dye laser pulses of ≈5 ns duration, ≈4 × 1011 W cm−2 maximum intensity and 715–737 nm wavelength range. Within this range there are three-photon resonant, four-photon ionized bound states and the four-photon excited 5p 2 1S0 highly correlated autoionizing state, located above the first ionization threshold of strontium. Electron spectra as a function of laser wavelength probed the accumulation of population in the excited 4d j and 5p j Sr+ states. This observation signifies the absorption of at least two photons above the first ionization threshold. However, contrary to what was anticipated in earlier work (performed using the present excitation and ionization scheme but without electron detection) the former states are found to be much more heavily populated than the latter ones. Thus, multi-photon ionization out of the 4d 3/2,5/2 levels of Sr+ and within the same laser pulse is identified as the main pathway to double ionization. Finally, the recording of photoelectron angular distributions from four-photon ionization for selected laser wavelengths revealed the dominant contributing partial waves.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    P. Lambropoulos, P. Maragakis, J. Zhang, Phys. Rep. 305, 205 (1998) and references thereinCrossRefADSGoogle Scholar
  2. 2.
    D. Kim, S. Fournier, M. Saeed, L.F. DiMauro, Phys. Rev. A 41, 4966 (1990) CrossRefADSGoogle Scholar
  3. 3.
    T.T. Bernat, I.I. Bondar, V.V. Suran, Opt. Spectrosc. 71, 22 (1991)ADSGoogle Scholar
  4. 4.
    I.I. Bondar, V.V. Suran, J. Exp. Theor. Phys. Lett. 68, 837 (1998)CrossRefGoogle Scholar
  5. 5.
    I.I. Bondar, V.V. Suran, M.I. Dudich, J. Phys. B 33, 4243 (2000) CrossRefADSGoogle Scholar
  6. 6.
    I. Bondar, V.V. Suran, J. Phys. B 35, 3391 (2002) CrossRefADSGoogle Scholar
  7. 7.
    I. Liontos, A. Bolovinos, S. Cohen, A. Lyras, Phys. Rev. A 70, 033403 (2004) CrossRefADSGoogle Scholar
  8. 8.
    I. Liontos, S. Cohen, A. Lyras, J. Phys. B 43, 095602 (2010) CrossRefADSGoogle Scholar
  9. 9.
    I. Liontos, S. Cohen, A. Bolovinos, J. Phys. B 41, 04560 (2008) CrossRefGoogle Scholar
  10. 10.
    I.I. Bondar, V.V. Suran, D.I. Bondar, J. Exp. Theor. Phys. 116, 887 (2013) CrossRefADSGoogle Scholar
  11. 11.
    I. Bondar, V.V. Suran, D.I. Bondar, Phys. Rev. A 88, 023407 (2013) CrossRefADSGoogle Scholar
  12. 12.
    M. Aymar, C.H. Greene, E. Luc-Koening, Rev. Mod. Phys. 68, 1015 (1996) CrossRefADSGoogle Scholar
  13. 13.
    M.J. Nandor, M.A. Walker, L.D. Van Woerkom, H.G. Muller, Phys. Rev. A 60, R1771 (1999) CrossRefADSGoogle Scholar
  14. 14.
    G.D. Gillen, M.A. Walker, L.D. Van Woerkom, Phys. Rev. A 64, 043413 (2011) CrossRefADSGoogle Scholar
  15. 15.
    A. Dimitriou, S. Cohen, A. Lyras, J. Phys. B 44, 135001 (2011) CrossRefADSGoogle Scholar
  16. 16.
    A. Dimitriou, S. Cohen, A. Lyras, A. Liontos, J. Phys. B 45, 205003 (2012) CrossRefADSGoogle Scholar
  17. 17.
    Y. Ralchenko, A. Kramida, J. Reader, NIST, ASD Team NIST Atomic Spectra Database (version 4.1) (2011) http://physics.nist.gov/asd
  18. 18.
    N. Vaeck, M. Godefroid, J.E. Hansen, Phys. Rev. A 38, 2830 (1988) CrossRefADSGoogle Scholar
  19. 19.
    J.E. Hansen, W. Persson, J. Phys. B 10, L363 (1977) CrossRefADSGoogle Scholar
  20. 20.
    L. Vaillant, M.P.A. Jones, R.M. Potvliege, J. Phys. B 47, 155001 (2014) CrossRefADSGoogle Scholar
  21. 21.
    M. Kompitsas, S. Goutis, M. Aymar, P. Camus, J. Phys. B 24, 1557 (1991) CrossRefADSGoogle Scholar
  22. 22.
    A. Dimitriou, S. Cohen, Phys. Rev. A 90, 012513 (2014) CrossRefADSGoogle Scholar
  23. 23.
    E.Y. Xu, Y. Zhu, O. Mullins, T.F. Gallagher, Phys. Rev. A 33, 2401 (1985) CrossRefADSGoogle Scholar
  24. 24.
    E.Y. Xu, Y. Zhu, O.C. Mullins, T.F. Gallagher, Phys. Rev. A 35, 1138 (1986) CrossRefADSGoogle Scholar
  25. 25.
    C.J. Dai, J. Lu, J. Phys. B 29, 2473 (1996) CrossRefADSGoogle Scholar
  26. 26.
    C.J. Dai, J. Lu, S.F. Hu, Opt. Commun. 132, 241 (1996) CrossRefADSGoogle Scholar
  27. 27.
    D. Roy, D. Tremblay, Rep. Prog. Phys 53, 1621 (1990) CrossRefADSGoogle Scholar
  28. 28.
    S.J. Bajic, R.N. Compton, X. Tang, P. Lambropoulos, Phys. Rev. A 44, 2102 (1991) CrossRefADSGoogle Scholar
  29. 29.
    G.N. Gibson, R.R. Freeman, T.J. McIlrath, H.G. Muller, Phys. Rev. A 49, 3870 (1994) CrossRefADSGoogle Scholar
  30. 30.
    V.S. Letokhov, Laser Photoionization Spectroscopy (Academic Press, New York, 1987)Google Scholar
  31. 31.
    P. Lambropoulos, Adv. At. Mol. Phys. 12, 87 (1976)CrossRefADSGoogle Scholar
  32. 32.
    S.J. Smith, G. Leuchs, Adv. At. Mol. Phys. 24, 157 (1988) and references thereinCrossRefADSGoogle Scholar
  33. 33.
    L.A.A. Nikolopoulos, Phys. Rev. A 71, 033409 (2005) CrossRefADSGoogle Scholar
  34. 34.
    F. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Atomic and Molecular Physics Laboratory, Physics DepartmentUniversity of IoanninaIoanninaGreece

Personalised recommendations