Advertisement

Generalized mean-field approach to simulate the dynamics of large open spin ensembles with long range interactions

  • Sebastian Krämer
  • Helmut Ritsch
Regular Article

Abstract

We numerically study the collective coherent and dissipative dynamics in spin lattices with long range interactions in one, two and three dimensions. For generic geometric configurations with a small spin number, which are fully solvable numerically, we show that a dynamical mean-field approach based upon a spatial factorization of the density operator often gives a surprisingly accurate representation of the collective dynamics. Including all pair correlations at any distance in the spirit of a second order cumulant expansion improves the numerical accuracy by at least one order of magnitude. We then apply this truncated expansion method to simulate large numbers of spins from about ten in the case of the full quantum model, a few thousand, if all pair correlations are included, up to several ten-thousands in the mean-field approximation. We find collective modifications of the spin dynamics in surprisingly large system sizes. In 3D, the mutual interaction strength does not converge to a desired accuracy within the maximum system sizes we can currently implement. Extensive numerical tests help in identifying interaction strengths and geometric configurations where our approximations perform well and allow us to state fairly simple error estimates. By simulating systems of increasing size we show that in one and two dimensions we can include as many spins as needed to capture the properties of infinite size systems with high accuracy. As a practical application our approach is well suited to provide error estimates for atomic clock setups or super radiant lasers using magic wavelength optical lattices.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    W. Heisenberg, Zeit. Phys. 49, 619 (1928)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H.B. Thacker, Rev. Mod. Phys. 53, 253 (1981)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.E. Fisher, Am. J. Phys. 32, 343 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    F. Haldane, Phys. Rev. Lett. 50, 1153 (1983) ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Van Dongen, D. Vollhardt, Phys. Rev. Lett. 65, 1663 (1990) ADSCrossRefGoogle Scholar
  6. 6.
    P.A. Pearce, C.J. Thompson, Commun. Math. Phys. 58, 131 (1978)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Byczuk, D. Vollhardt, Phys. Rev. B 77, 235106 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    E. Altman, W. Hofstetter, E. Demler, M.D. Lukin, New J. Phys. 5, 113 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Adv. Phys. 56, 243 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A. Micheli, G. Brennen, P. Zoller, Nat. Phys. 2, 341 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Ficek, R. Tanas, S. Kielich, Optica Acta 33, 1149 (1986) CrossRefGoogle Scholar
  13. 13.
    H. Zoubi, H. Ritsch, Adv. At. Mol. Opt. Phys. 62, 171 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Zoubi, H. Ritsch, Europhys. Lett. 87, 23001 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    C. Gardiner, P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer Science & Business Media, 2004), Vol. 56 Google Scholar
  16. 16.
    L. Pollet, J. Picon, H. Büchler, M. Troyer, Phys. Rev. Lett. 104, 125302 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    M. Takamoto, F.L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Ludlow et al., Science 319, 1805 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    X. Zhang, M. Bishof, S. Bromley, C. Kraus, M. Safronova, P. Zoller, A. Rey, J. Ye, Science 345, 1467 (2014) ADSCrossRefGoogle Scholar
  20. 20.
    L. Ostermann, H. Zoubi, H. Ritsch, Opt. Express 20, 29634 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    T. Maier, S. Kraemer, L. Ostermann, H. Ritsch, Opt. Express 22, 13269 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    M. Martin, M. Bishof, M. Swallows, X. Zhang, C. Benko, J. Von-Stecher, A. Gorshkov, A. Rey, J. Ye, Science 341, 632 (2013) ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    S. Gopalakrishnan, B. Lev, P. Goldbart, Bull. Am. Phys. Soc. (2012)Google Scholar
  24. 24.
    L. Ostermann, H. Ritsch, C. Genes, Phys. Rev. Lett. 111, 123601 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    J.G. Bohnet, Z. Chen, J.M. Weiner, D. Meiser, M.J. Holland, J.K. Thompson, Nature 484, 78 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    K. Henschel, J. Majer, J. Schmiedmayer, H. Ritsch, Phys. Rev. A 82, 033810 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastian Krämer
    • 1
  • Helmut Ritsch
    • 1
  1. 1.Institute for Theoretical Physics, Universität InnsbruckInnsbruckAustria

Personalised recommendations