Advertisement

Transport of secondary electrons and reactive species in ion tracks

  • Eugene SurdutovichEmail author
  • Andrey V. Solov’yov
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy

Abstract

The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well.

Graphical abstract

Keywords

Secondary Electron Reactive Species Bragg Peak Linear Energy Transfer Solvate Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Surdutovich, A. Solov’yov, Eur. Phys. J. D 68, 353 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    C. von Sonntag, The Chemical Basis of Radiation Biology (Taylor & Francis, London, 1987)Google Scholar
  3. 3.
    H. Nikjoo, P. O’Neill, D.T. Goodhead, M. Terrissol, Int. J. Radiat. Biol. 71, 467 (1997)CrossRefGoogle Scholar
  4. 4.
    A. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    E. Surdutovich, O. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 245 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    O. Obolensky, E. Surdutovich, I. Pshenichnov, I. Mishustin, A. Solov’yov, W. Greiner, Nucl. Instrum. Methods B 266, 1623 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H. Nikjoo, S. Uehara, W.E. Wilson, M. Hoshi, D.T. Goodhead, Int. J. Radiat. Biol. 73, 355 (1998)CrossRefGoogle Scholar
  11. 11.
    C. Tung, T. Chao, H. Hsieh, W. Chan, Nucl. Instrum. Methods B 262, 231 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J. LaVerne, Radiat. Phys. Chem. 34, 135 (1989)ADSGoogle Scholar
  13. 13.
    M. Waligorski, R. Hamm, R. Katz, Nucl. Tracks Radiat. Meas. 11, 309 (1986)CrossRefGoogle Scholar
  14. 14.
    L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, W. Greiner, J. Phys. B 30, 4905 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M. Toulemonde, E. Surdutovich, A. Solov’yov, Phys. Rev. E 80, 031913 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsOakland UniversityRochesterUSA
  2. 2.MBN Research CenterFrankfurt am MainGermany
  3. 3.A.F. Ioffe Physical Technical InstituteSt. PetersburgRussian Federation

Personalised recommendations