Advertisement

Transition dipole function and radiative lifetimes for the A and C 1Σ+ states of the LiH molecule

  • Hamid BerricheEmail author
  • Florent Xavier Gadéa
Regular Article

Abstract

The transition dipole moments of the first eight 1Σ+ states of the LiH molecule have been calculated using ab initio approach based on the pseudopotential technique. Such transition dipole moments have been used to determine the radiative lifetimes for all vibrational levels of the first and the second excited states, A and C 1Σ+, using accurate adiabatic potential energy curves. In addition to the bound-bound transitions, we have included the bound-free emissions probabilities. The latter was calculated exactly and using the Franck-Condon approximation and then included in the total radiative lifetime. A significant change in these lifetimes has been observed, particularly for the higher excited vibrational levels for which the approximate evaluation breaks down. The radiative lifetimes of the vibrational levels of the A1Σ+ exited sate are in very good agreement with the few available theoretical and experimental results. However, the radiative lifetimes associated to the C1Σ+ state are presented here for the first time.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    H. Partridge, R.S. Langhoff, J. Chem. Phys. 74, 2361 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    K.K. Docken, J. Hinze, J. Chem. Phys. 57, 4928 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    K. Sasagane, K. Mori, A. Ichihara, R. Itoh, J. Chem. Phys. 92, 3619 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    X.C. Wang, K.F. Freed, J. Chem. Phys. 91, 32 (1989)Google Scholar
  5. 5.
    S. Ben-Shlomo, U. Kaldor, J. Chem. Phys. 89, 956 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    L. Mendez, I.L. Copper, A.S. Dickinson, O. Mo, A. Riera, J. Phys. B 23, 2797 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    A. Balkova, S.A. Kucharski, L. Meissner, P.J. Bartlett, J. Chem. Phys. 95, 4311 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    K.R. Way, W.C. Stawlly, J. Chem. Phys. 59, 5298 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    Y.C. Chan, D.R. Hardingand, W.C. Stwalley, C.V. Vidal, J. Chem. Phys. 85, 2436 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    A. Boutalib, F.X. Gadéa, J. Chem. Phys. 97, 1144 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    H. Berriche, F.X. Gadéa, Chem. Phys. Lett. 247, 85 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    F.X. Gadéa, H. Berriche, O. Romero, P. Villarreal, G.D. Barrio, J. Chem. Phys. 107, 10515 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    F.X. Gadéa, F. Gemperle, H. Berriche, P. Villareal, G.D. Barrio, J. Phys. B 30, 427 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    W. Zrafi, B. Oujia, H. Berriche, F.X. Gadéa, J. Mol. Struct. 777, 87 (2006)CrossRefGoogle Scholar
  15. 15.
    F. Gemperle, F.X. Gadéa, J. Chem. Phys. 110, 11197 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    F.A. Gianturco, P. Gori Giorgi, H. Berriche, F.X. Gadéa, Astron. Astrophys. Suppl. Ser. 117, 377 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    K.K. Docken, J. Hinze, J. Chem. Phys. 57, 4936 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    C.F. Bender, E.R. Davidson, J. Chem. Phys. 49, 4222 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    H. Partridge, S.R. Langhoff, W.C. Stwalley, W.T. Zemke, J. Chem. Phys. 75, 2299 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Bishop, L.M. Cheung, J. Chem. Phys. 78, 1396 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Bishop, L.M. Cheung, J. Chem. Phys. 78, 7265 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Bishop, L.M. Cheung, J. Chem. Phys. 41, 3663 (1964)CrossRefGoogle Scholar
  23. 23.
    J.O. Jensen, D.R. Yarkony, J. Chem. Phys. 89, 975 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    C.R. Vidal, W.C. Stwalley, J. Chem. Phys. 77, 883 (1982)ADSCrossRefGoogle Scholar
  25. 25.
    Y.C. Chan, D.R. Harding, W.C. Stwalley, C.R. Vidal, J. Chem. Phys. 85, 2437 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    N. Geum, G.H. Jeung, A. Derevianko, R. Côté, A. Dalgarno, J. Chem. Phys. 115, 5984 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    K.K. Docken, J. Hinze, J. Chem. Phys. 73, 4936 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    L. Wharton, L.P. Gold, W. Klemper, J. Chem. Phys. 33, 1255 (1960)ADSCrossRefGoogle Scholar
  29. 29.
    L. Wharton, L.P. Gold, W. Klemper, J. Chem. Phys. 37, 2149 (1962)ADSCrossRefGoogle Scholar
  30. 30.
    E. Rothstein, J. Chem. Phys. 50, 1899 (1969)ADSCrossRefGoogle Scholar
  31. 31.
    H. Partridge, S.R. Langhoff, W.C. Stwalley, W.T. Zemke, J. Chem. Phys. 75, 2299 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    K.K. Docken, J. Hinze, J. Chem. Phys. 57, 4928 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    M. Brieger, A. Renn, A. Sodeik, Chem. Phys. Lett. 76, 465 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    P.J. Dagdigian, J. Chem. Phys. 73, 2049 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    W.T. Zemke, J.B. Crooks, W.C. Stwalley, J. Chem. Phys. 68, 4628 (1978)ADSCrossRefGoogle Scholar
  36. 36.
    S.J. Till, S.T. Howard, I.W. Parsons, J. Chem. Phys. 95, 9079 (1991)ADSCrossRefGoogle Scholar
  37. 37.
    P.J. Dagdigian, J. Chem. Phys. 64, 2609 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    P.H. Wine, L.A. Melton, J. Chem. 64, 2692 (1976)ADSGoogle Scholar
  39. 39.
    S.K. Tokunaga, J.O. Stack, J.J. Hudson, B.E. Sauer, E.A. Hinds, M.R. Tarbutt, J. Chem. Phys. 126, 124314 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    N. Bouloufa, L. Cabaret, P. Luc, R. Vetter, W.T. Luh, J. Chem. Phys. 121, 7237 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    F.X. Gadéa, M. Pellissier, J. Chem. Phys. 93, 545 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    W.C. Tung, L. Adamowicz, J. Chem. Phys. 140, 124315 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    F.X. Gadéa, T. Leininger, Teor. Chem. Acc. 116, 566 (2006)CrossRefGoogle Scholar
  44. 44.
    T.L. Stephens, A. Dalgarno, J. Quant. Spectrosc. Radiat. Transfer 12, 569 (1972)ADSCrossRefGoogle Scholar
  45. 45.
    A. Pardo, Spectrochim. Acta 54, 1433 (1998)CrossRefGoogle Scholar
  46. 46.
    A. Pardo, J. Mol. Spectrosc. 195, 68 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    Y.L. Huang, W.T. Luh, G.H. Jeung, F.X. Gadéa, J. Chem. Phys. 113, 683 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    C.Y. Wu, W.T. Luth, F.X. Gadéa, W.C. Stwalley, J. Chem. Phys. 128, 064303 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    F. Gemperle, F.X. Gadéa, Europhys. Lett. 48, 513 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire des Interfaces et Matériaux Avancés, Faculty of Science, University of MonastirMonastirTunisia
  2. 2.Mathematics and Natural Sciences Department, School of Arts and Sciences, American University of Ras Al KhaimahRas Al KhaimahUAE
  3. 3.Laboratoire de Physique et Chimie Quantique, UMR 5626 du CNRS, Université Paul SabatierToulouse Cedex 4France

Personalised recommendations