Advertisement

Collinear laser spectroscopy of atomic cadmium

Extraction of nuclear magnetic dipole and electric quadrupole moments
  • Nadja Frömmgen
  • Dimiter L. Balabanski
  • Mark L. Bissell
  • Jacek Bieroń
  • Klaus Blaum
  • Bradley Cheal
  • Kieran Flanagan
  • Stephan Fritzsche
  • Christopher Geppert
  • Michael Hammen
  • Magdalena Kowalska
  • Kim Kreim
  • Andreas Krieger
  • Rainer Neugart
  • Gerda Neyens
  • Mustafa M. Rajabali
  • Wilfried Nörtershäuser
  • Jasna Papuga
  • Deyan T. Yordanov
Regular Article

Abstract

Hyperfine structure A and B factors of the atomic 5s5p 3P2 → 5s6s 3S1 transition are determined from collinear laser spectroscopy data of 107−123Cd and 111m−123m Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with s 1/2 and d 5/2 nuclear ground states and isomeric h 11/2 states is evaluated and a linear relationship is observed for all nuclear states except s 1/2. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic 5s5p 3P2 level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    A. Bohr, V.F. Weisskopf, Phys. Rev. 77, 94 (1950)zbMATHADSCrossRefGoogle Scholar
  2. 2.
    P.A. Moskowitz, M. Lombardi, Phys. Lett. B 46, 334 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    P.A. Moskowitz, Phys. Lett. B 118, 29 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Persson, Hyperf. Int. 162, 139 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    C. Ekström et al., Nucl. Phys. A 348, 25 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Mueller et al., Nucl. Phys. A 403, 234 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    R.L. Chaney, M.N. McDermott, Phys. Lett. A 29, 103 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    P.W. Spence, M.N. McDermott, Phys. Lett. A 42, 273 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    N.S. Laulainen, M.N. McDermott, Phys. Rev. 177, 1615 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    D.T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    K. Kreim et al., Phys. Lett. B 371, 97 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    K. Burns, K.B. Adams, J. Opt. Soc. Am. 46, 94 (1956)ADSCrossRefGoogle Scholar
  13. 13.
    A. Krieger et al., Nucl. Instrum. Meth. A 632, 23 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Symochko et al., Nucl. Data Sheets 110, 2945 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    W. Faust, M.N. McDermott, W. Lichten, Phys. Rev. 120, 469 (1960)ADSCrossRefGoogle Scholar
  16. 16.
    M.S.W.M. Brimicombe et al., Proc. R. Soc. Lond. A. 352, 141 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    N. Boos, Diploma Thesis, Institut für Kernphysik, Universität Mainz (1989)Google Scholar
  18. 18.
    N.J. Stone, Atom. Data Nucl. Data Tab. 90, 75 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kopfermann, Nuclear Moments (Academic Press, New York, 1958)Google Scholar
  20. 20.
    J.R. Persson, Atom. Data Nucl. Data Tab. 99, 62 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    P. Thaddeus, M.N. McDermott, Phys. Rev. 132, 1186 (1963)ADSCrossRefGoogle Scholar
  22. 22.
    I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer, New York, 2007)Google Scholar
  23. 23.
    P. Jönsson, X. He, C. Froese Fischer, Comput. Phys. Commun. 176, 597 (2007)CrossRefGoogle Scholar
  24. 24.
    P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 184, 2197 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    I.P. Grant, Comput. Phys. Commun. 84, 59 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    K. Paduch, J. Bieroń, J. Phys. B 33, 303 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    A. Derevianko, Phys. Rev. A 65, 012106 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    J. Bieroń, P. Pyykkö, D. Sundholm, V. Kellö, A.J. Sadlej, Phys. Rev. A 64, 052507 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    J. Bieroń, P. Jönsson, C. Froese Fischer, Phys. Rev. A 53, 2181 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    J. Bieroń, C. Froese Fischer, P. Indelicato, P. Jönsson, P. Pyykkö, Phys. Rev. A 79, 052502 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bieroń, I.P. Grant, C. Froese Fischer, Phys. Rev. A 56, 316 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    I. Lindgren, Rep. Prog. Phys. 47, 345 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    B.G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965)Google Scholar
  34. 34.
    B. Engels, Theor. Chim. Acta 86, 429 (1993)CrossRefGoogle Scholar
  35. 35.
    S. Fritzsche, Phys. Scr. T100, 37 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    J. Bieroń, P. Pyykkö, P. Jönsson, Phys. Rev. A 71, 012502 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    B.J. McKenzie, I.P. Grant, P.H. Norrington, Comput. Phys. Commun. 21, 233 (1980)ADSCrossRefGoogle Scholar
  39. 39.
    J. Bieroń, P. Pyykkö, Phys. Rev. A 71, 032502 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    J. Bieroń, J. Phys. B 38, 2221 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nadja Frömmgen
    • 1
  • Dimiter L. Balabanski
    • 2
  • Mark L. Bissell
    • 3
  • Jacek Bieroń
    • 4
  • Klaus Blaum
    • 5
  • Bradley Cheal
    • 6
  • Kieran Flanagan
    • 7
  • Stephan Fritzsche
    • 8
    • 9
  • Christopher Geppert
    • 1
    • 10
  • Michael Hammen
    • 1
  • Magdalena Kowalska
    • 11
  • Kim Kreim
    • 5
  • Andreas Krieger
    • 1
    • 10
  • Rainer Neugart
    • 1
    • 5
  • Gerda Neyens
    • 3
  • Mustafa M. Rajabali
    • 3
  • Wilfried Nörtershäuser
    • 1
    • 10
  • Jasna Papuga
    • 3
  • Deyan T. Yordanov
    • 5
    • 11
    • 12
  1. 1.Institut für Kernchemie, Johannes Gutenberg-Universität MainzMainzGermany
  2. 2.ELI-NP, Horia Hulubei National Institute for R&D in Physics and Nuclear EngineeringMagureleRomania
  3. 3.Instituut voor Kern- en Stralingsfysica, KU LeuvenLeuvenBelgium
  4. 4.Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagielloński, ul. prof. Stanisława Łojasiewicza 11KrakówPoland
  5. 5.Max-Planck-Institut für KernphysikHeidelbergGermany
  6. 6.Oliver Lodge Laboratory, University of LiverpoolLiverpoolUK
  7. 7.School of Physics and Astronomy, University of ManchesterManchesterUK
  8. 8.Helmholtz-Institut JenaJenaGermany
  9. 9.Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität JenaJenaGermany
  10. 10.Institut für Kernphysik, Technische Universität DarmstadtDarmstadtGermany
  11. 11.CERN European Organization for Nuclear Research, Physics DepartmentGeneva 23Switzerland
  12. 12.Institut de Physique Nucléaire, Orsay, IN2P3/CNRSOrsay CedexFrance

Personalised recommendations