Advertisement

Spatiotemporal wave-train instabilities in nonlinear Schrödinger equation: revisited

  • Saliya CoulibalyEmail author
  • Eric Louvergneaux
  • Majid Taki
  • Léo Brevdo
Regular Article

Abstract

A complete description of properties of the wave-train bifurcating from unstable basic oscillatory states (CW nonlinear stationary states) of the nonlinear Schrödinger equation are studied in the moving frames of reference as an initial value problem and using the methods of absolute and convective instabilities. The predictions are in excellent agreement with numerical solutions and may contribute understanding the nonlinear Schrödinger equation complex dynamics under various initial conditions including, localized and/or noisy initial conditions.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    P.G. Drazin, W.H. Reid, Hydrodynamic stability (Cambridge University Press, 2004)Google Scholar
  2. 2.
    S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Dover Publications, New York, 1981)Google Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (GITTL, Moscow, 1953)Google Scholar
  4. 4.
    R.Q. Twiss, Proc. Phys. Soc. Lond. B 64, 654 (1951)CrossRefADSGoogle Scholar
  5. 5.
    R.J. Briggs, Electron-stream Interaction with Plasmas (MIT Press, Cambridge, 1964)Google Scholar
  6. 6.
    A. Bers, in International Congress on Waves and Instabilities in Plasmas, edited by G. Auer, F. Cap (Innsbruck, 1973), pp. B1–B52Google Scholar
  7. 7.
    H. Ward, M.N. Ouarzazi, M. Taki, P. Glorieux, Phys. Rev. E 63, 16604 (2001)CrossRefADSGoogle Scholar
  8. 8.
    L. Brevdo, Z. Angew. Math. Mech. 74, T340 (1994)CrossRefGoogle Scholar
  9. 9.
    S. Coulibaly, M. Taki, N. Akhmediev, Opt. Lett. 36, 4410 (2011)CrossRefADSGoogle Scholar
  10. 10.
    L. Brevdo, T.J. Bridges, Phil. Trans. Roy. Soc. Lond. A 354, 1027 (1996)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    L. Brevdo, T.J. Bridges, Z. Angew. Math. Phys. 48, 290 (1997)MathSciNetGoogle Scholar
  12. 12.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, Boston, 2008)Google Scholar
  13. 13.
    J.T. Stuart, R.C. DiPrima, Proc. Roy. Soc. Lond. A 362, 27 (1978)CrossRefADSGoogle Scholar
  14. 14.
    M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, Phys. Lett. A 374, 691 (2010)CrossRefADSGoogle Scholar
  15. 15.
    K.L. Babcock, G. Ahlers, D.S. Cannell, Phys. Rev. Lett. 67, 3388 (1991)CrossRefADSGoogle Scholar
  16. 16.
    M. Santagiustina, P. Colet, M. San Miguel, D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997)CrossRefADSGoogle Scholar
  17. 17.
    E. Louvergneaux, C. Szwaj, G. Agez, P. Glorieux, M. Taki Phys. Rev. Lett. 92, 043901 (2004)CrossRefADSGoogle Scholar
  18. 18.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)CrossRefADSGoogle Scholar
  19. 19.
    M. Erkintalo, G. Genty, J.M. Dudley, Eur. Phys. J. ST 185, 135 (2010)CrossRefGoogle Scholar
  20. 20.
    N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Phys. Lett. A 373, 2137 (2009)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    K. Hammani, B. Kibler, C. Finot, A. Picozzi, Phys. Lett. A 374, 3585 (2010)CrossRefADSGoogle Scholar
  22. 22.
    A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, M. Taki, Optics Express 17, 17010 (2009)CrossRefADSGoogle Scholar
  23. 23.
    C. Kharif, E.N. Pelinovskii, A. Slunyaev, Rogue Waves in the Ocean (Springer-Verlag, Berlin, 2009), Chap. 4 and references thereinGoogle Scholar
  24. 24.
    M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Phys. Rep. 528, 47 (2013)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2008)CrossRefADSGoogle Scholar
  26. 26.
    V.I. Bespalov, V.I. Talanov, J. Exp. Theor. Phys. Lett. 3, 307 (1966)Google Scholar
  27. 27.
    L. Brevdo, Geophys. Astrophys. Fluid Dyn. 40, 1 (1988)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    L. Brevdo, P. Laure, F. Dias, T.J. Bidges, J. Fluid Mech. 396, 37 (1999)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer-Verlag, New York, 1987)Google Scholar
  30. 30.
    M. Yu, C.J. McKinstrie, Phys. Rev. E 52, 6826 (1995)CrossRefADSGoogle Scholar
  31. 31.
    B. Boashash, Proc. IEEE 80, 520 (1992)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Saliya Coulibaly
    • 1
    Email author
  • Eric Louvergneaux
    • 1
  • Majid Taki
    • 1
  • Léo Brevdo
    • 2
  1. 1.Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS UMR 8523Université de Lille Sciences et TechnologiesVilleneuve d’Ascq CedexFrance
  2. 2.ICube, CNRS UMR 7357Université de StrasbourgStrasbourgFrance

Personalised recommendations