Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

  • Dmytro V. Piatnytskyi
  • Oleksiy O. Zdorevskyi
  • Sergiy M. PerepelytsyaEmail author
  • Sergey N. Volkov
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy


Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4 - may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy.


Phosphate Group Double Helix Atomic Group Radiolysis Product Water Radiolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Gravitz, Nature Outlook 491, 7425 (2012)Google Scholar
  2. 2.
    A. Brown, S. Herman, Radiol. Oncol. 73, 265 (2004)CrossRefGoogle Scholar
  3. 3.
    G. Kraft, Progr. Part. Nucl. Phys. 45, S473 (2000)CrossRefADSGoogle Scholar
  4. 4.
    H. Suit et al., Radiother. Oncol. 95, 3 (2010)CrossRefGoogle Scholar
  5. 5.
    C.D. Schlaff, A. Krauze, A. Belard, J.J. O’Connell, K.A. Camphausen, Radiat. Oncol. 9, 88 (2014)CrossRefGoogle Scholar
  6. 6.
    N.W. Timofeeff-Ressovsky, A.V. Savich, M.I. Shal’nov, in Introduction to Molecular Radiobiology: Physico-Chemical Foundations (Medicina, Moscow, 1981) 320Google Scholar
  7. 7.
    W. Saenger, in Principles of Nucleic Acid Structure (Springer, New York, 1984) p. 584Google Scholar
  8. 8.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)CrossRefADSGoogle Scholar
  9. 9.
    A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, Nucl. Instrum. Methods Phys. Res. B 279, 135 (2012)CrossRefADSGoogle Scholar
  10. 10.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)CrossRefADSGoogle Scholar
  11. 11.
    E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 438, 012014 (2013)ADSGoogle Scholar
  12. 12.
    I. Pshenichnov, A. Botvina, I. Mishustin, W. Greiner, Nuclear Instrum. Methods Phys. Res. B 268, 604 (2010)CrossRefADSGoogle Scholar
  13. 13.
    E. Haettner, H. Iwase, D. Schardt, Radiat. Prot. Dosimetry 122, 485 (2006)CrossRefGoogle Scholar
  14. 14.
    J. Soltani-Nabipour, M A. Popovici, Gh. Cata-Danil, Rep. Phys. 62, 37 (2010)Google Scholar
  15. 15.
    B. Pastina, J.A. LaVerne, J. Phys. Chem. A 103, 1592 (1999)CrossRefGoogle Scholar
  16. 16.
    S. Le Caer, Water 3, 235 (2011)CrossRefADSGoogle Scholar
  17. 17.
    V. Wasselin-Trupin, G. Baldacchino, S. Bouffard, B. Hickel, Radiat. Phys. Chem. 65, 53 (2002)CrossRefADSGoogle Scholar
  18. 18.
    M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat. Environ. Biophys. 48, 11 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Uehara, H. Nikjoo, J. Radiat. Res. 47, 69 (2006)CrossRefGoogle Scholar
  20. 20.
    V.V. Zhurkin, V.I. Poletaev, V.L. Florentiev, Mol. Biol. (Moscow) 14, 1116 (1980)Google Scholar
  21. 21.
    V.I. Poltev, N.V. Shuliupina, Mol. Biol. (Moscow) 18, 1549 (1984)Google Scholar
  22. 22.
    Brief Chemical Encyclopedia (Soviet Encyclopedia, Moscow, 1961), Vol. 1Google Scholar
  23. 23.
    B. Schneider, M. Kabelac, P. Hobza, J. Am. Chem. Soc. 118, 12207 (1996)CrossRefGoogle Scholar
  24. 24.
    B. Schneider, M. Kabelac, J. Am. Chem. Soc. 120, 161 (1998)CrossRefGoogle Scholar
  25. 25.
    C. Kittel, in Introduction to Solid State Physics (John Wiley and Sons, Inc., New York, 1954), p. 696Google Scholar
  26. 26.
    S.M. Perepelytsya, S.N. Volkov, Ukr. J. Phys. 49, 1074 (2004)Google Scholar
  27. 27.
    S.M. Perepelytsya, S.N. Volkov, Eur. Phys. J. E 24, 261 (2007)CrossRefGoogle Scholar
  28. 28.
    S.M. Perepelytsya, S.N. Volkov, Eur. Phys. J. E 31, 201 (2010)CrossRefGoogle Scholar
  29. 29.
    L.A. Bulavin, S.N. Volkov, S.Yu. Kutovy, S.M. Perepelytsya, Reports of National Academy of Science of Ukraine, No. 11, 2007 pp. 69-73. arXiv:0805.0696
  30. 30.
    S.N. Volkov, A.M. Kosevich, Mol. Biol. 21, 797 (1987)Google Scholar
  31. 31.
    S.N. Volkov, A.M. Kosevich, G.E. Weinreb, Biopolimery i Kletka 5, 32 (1989)Google Scholar
  32. 32.
    S.N. Volkov, A.M. Kosevich, J. Biomolec. Struct. Dyn. 8, 1069 (1991)CrossRefGoogle Scholar
  33. 33.
    A.M. Kosevich, S.N. Volkov, in Nonlinear Excitations in Biomolecules, edited by M. Peyrard (Springer, 1995), pp. 118−128Google Scholar
  34. 34.
    J.D. Watson, Molecular Biology of the Gene (W.B. Benjamin. Inc., Menlo Park, 1978), p. 706Google Scholar
  35. 35.
    G. Manda, M.T. Nechifor, T.M. Neagu, Curr. Chem. Biol. 3, 342 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dmytro V. Piatnytskyi
    • 1
  • Oleksiy O. Zdorevskyi
    • 1
  • Sergiy M. Perepelytsya
    • 1
    Email author
  • Sergey N. Volkov
    • 1
  1. 1.Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of UkraineKievUkraine

Personalised recommendations