Skip to main content

Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations

Abstract

The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points — recorded with nanometre resolution — we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field.

Graphical abstract

References

  1. 1.

    D. Schulz-Ertner, H. Tsujii, J. Clin. Oncol. 25, 953 (2007)

    Article  Google Scholar 

  2. 2.

    H. Rabus et al., Eur. Phys. J. Web Conf. 77, 00021 (2014)

    Article  ADS  Google Scholar 

  3. 3.

    H. Palmans et al., British J. Radiol. 88, 20140392 (2015)

    Article  Google Scholar 

  4. 4.

    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  5. 5.

    S. Incerti et al., Int. J. Model., Simul. Sci. Comput. 01, 157 (2010)

    Article  Google Scholar 

  6. 6.

    S. Incerti et al., Med. Phys. 37, 4692 (2010)

    Article  Google Scholar 

  7. 7.

    G. Bäckström, M. Galassi, N. Tilly, A. Ahnesjö, J. Fernández-Varea, J. Med. Phys. 40, 064101 (2013)

    Article  Google Scholar 

  8. 8.

    R.W. Schulte et al., Zit. Med. Phys. 18, 286 (2008)

    Article  Google Scholar 

  9. 9.

    B. Grosswendt, Radiat. Environ. Biophys. 41, 103 (2002)

    Article  Google Scholar 

  10. 10.

    H. Wang, O.N. Vassiliev, Phys. Med. Biol. 59, 3657 (2014)

    Article  Google Scholar 

  11. 11.

    M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)

    Article  Google Scholar 

  12. 12.

    B. Grosswendt, Radiat. Protect. Dosimetry 110, 789 (2004)

    Article  Google Scholar 

  13. 13.

    B. Grosswendt, Radiat. Protect. Dosimetry 115, 1 (2005)

    Article  Google Scholar 

  14. 14.

    B. Grosswendt, Radiat. Protect. Dosimetry 122, 404 (2006)

    Article  Google Scholar 

  15. 15.

    G. Garty et al., Radiat. Protect. Dosimetry 122, 451 (2006)

    Article  Google Scholar 

  16. 16.

    G. Garty et al., Phys. Med. Biol. 55, 761 (2010)

    Article  Google Scholar 

  17. 17.

    D.T. Goodhead, Int. J. Rad. Biol. 65, 7 (1994)

    Article  Google Scholar 

  18. 18.

    P.L. Olive, Radiat. Res. 150, S42 (1998)

    Article  Google Scholar 

  19. 19.

    L.D. Nardo et al., Radiat. Environ. Biophys. 41, 235 (2002)

    Google Scholar 

  20. 20.

    H. Nikjoo, D.T. Goodhead, Phys. Med. Biol. 36, 229 (1991)

    Article  Google Scholar 

  21. 21.

    P. Lazarakis et al., Phys. Med. Biol. 57, 1231 (2012)

    Article  Google Scholar 

  22. 22.

    B. Grosswendt, S. Pszona, A. Bantsar, Radiat. Protect. Dosimetry 126, 432 (2007)

    Article  Google Scholar 

  23. 23.

    A. Bantsar, B. Grosswendt, J. Kula, S. Pszona, Radiat. Protect. Dosimetry 110, 845 (2004)

    Article  Google Scholar 

  24. 24.

    V. Bashkirov et al., Radiat. Protect. Dosimetry 122, 415 (2006)

    Article  Google Scholar 

  25. 25.

    V. Conte, P. Colautti, B. Grosswendt, D. Moro, L. De Nardo, New J. Phys. 14, 093010 (2012)

    Article  ADS  Google Scholar 

  26. 26.

    G. Garty et al., Nucl. Instrum. Methods Phys. Res. A 492, 212 (2002)

    Article  ADS  Google Scholar 

  27. 27.

    G. Garty et al., Radiat. Protect. Dosimetry 99, 325 (2002)

    Article  Google Scholar 

  28. 28.

    D.J. Carlson, R.D. Stewart, V.A. Semenenko, G.A. Sandison, Radiat. Res. 169, 447 (2008)

    Article  Google Scholar 

  29. 29.

    M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, Int. J. Radiat. Oncol., Biol., Phys. 83, 442 (2012)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frauke Alexander.

Additional information

Contribution to the Topical Issue “COST Action Nano- IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy”, edited by Andrey Solov’yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alexander, F., Villagrasa, C., Rabus, H. et al. Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations. Eur. Phys. J. D 69, 216 (2015). https://doi.org/10.1140/epjd/e2015-60206-5

Download citation

Keywords

  • Cluster Size
  • Projectile Energy
  • Track Structure
  • Radiation Quality
  • Track Segment