Advertisement

Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

  • Peter J. M. van der BurgtEmail author
  • Sinead Finnegan
  • Samuel Eden
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy

Abstract

Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N 3 + ). Matching ion yield shapes (118–120 u, 107–108 u, 91–92 u, and 54–56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV.

Graphical abstract

Keywords

Adenine Ionization Cross Section Fragmentation Pathway Appearance Energy Total Ionization Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Munoz, F. Blanco, G. Garcia, P.A. Thorn, M.J. Brunger, J.P. Sullivan, S.J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008) CrossRefADSGoogle Scholar
  2. 2.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) CrossRefADSGoogle Scholar
  3. 3.
    E. Surdutovich, A.V. Solov’yov, Europhys. News 40, 21 (2009)CrossRefADSGoogle Scholar
  4. 4.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)CrossRefADSGoogle Scholar
  5. 5.
    H. Hotop, M.-W. Ruf, M. Allan, I.I. Fabrikant, Adv. At. Mol. Opt. 49, 85 (2003)CrossRefADSGoogle Scholar
  6. 6.
    R. Balog, J. Langer, S. Gohlke, M. Stano, H. Abdoul-Carime, E. Illenberger, Int. J. Mass Spectrom. 233, 267 (2004) CrossRefADSGoogle Scholar
  7. 7.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005)CrossRefADSGoogle Scholar
  8. 8.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)CrossRefADSGoogle Scholar
  9. 9.
    B.A. Huber, C. Malot, A. Domaracka, Y.A. Gauduel, A. Solov’yov, J. Phys.: Conf. Ser. 373, 011001 (2012)ADSGoogle Scholar
  10. 10.
    Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor, M.C. Fuss (Springer, 2012)Google Scholar
  11. 11.
    M.A. Smialek, P. Limao-Vieira, N.J. Mason, A.V. Solov’yov, Eur. J. Phys. D 68, 312 (2014)CrossRefADSGoogle Scholar
  12. 12.
    J.M. Rice, G.O. Dudek, J. Am. Chem. Soc. 89, 2719 (1967) CrossRefGoogle Scholar
  13. 13.
    J.L. Occolowitz, Chem. Commun. 1226 (1968) Google Scholar
  14. 14.
    M.C.G. Barrio, D.I.C. Scopes, J.B. Holtwick, N.J. Leonard, Proc. Natl. Acad. Sci. USA 78, 3986 (1981) CrossRefADSGoogle Scholar
  15. 15.
    S.K. Sethi, S.P. Gupta, E.E. Jenkins, C.W. Whitehead, L.B. Townsend, J.A. McCloskey, J. Am. Chem. Soc. 104, 3349 (1982) CrossRefGoogle Scholar
  16. 16.
    B.F. Minaev, M.I. Shafranyosh, Yu. Yu Svida, M.I. Sukhoviya, I.I. Shafranyosh, G.V. Baryshnikov, V.A. Minaeva, J. Chem. Phys. 140, 175101 (2014) CrossRefADSGoogle Scholar
  17. 17.
    M.M. Dawley, K. Tanzer, W.A. Cantrell, P. Plattner, N.R. Brinkmann, P. Scheier, S. Denifl, S. Ptasińska, Phys. Chem. Chem. Phys. 16, 25039 (2014) (see also electronic supplement)CrossRefGoogle Scholar
  18. 18.
    H.-W. Jochims, M. Schwell, H. Baumgärtel, S. Leach, Chem. Phys. 314, 263 (2005) CrossRefADSGoogle Scholar
  19. 19.
    S. Pilling, A.F. Lago, L.H. Coutinho, R.B. de Castilho, G.G.B. de Souza, A. Naves de Brito, Rapid Commun. Mass Spectrom. 21, 3646 (2007)CrossRefGoogle Scholar
  20. 20.
    P.J.M. van der Burgt, F. Mahon, G. Barrett, M.L. Gradziel, Eur. Phys. J. D 68, 151 (2014)CrossRefADSGoogle Scholar
  21. 21.
    C. Fonseca Guerra, F.M. Bickelhaupt, S. Saha, F. Wang, J. Phys. Chem. A 110, 4012 (2006) CrossRefGoogle Scholar
  22. 22.
    R.K. Singh, J.V. Ortiz, M.K. Mishra, Int J. Quant. Chem. 110, 1901 (2010) Google Scholar
  23. 23.
    D. Touboul, F. Gaie-Levrel, G.A. Garcia, L. Nahon, L. Poisson, M. Schwell, M. Hochlaf, J. Chem. Phys. 138, 094203 (2013) CrossRefADSGoogle Scholar
  24. 24.
    Chr. Plützer, E. Nir, M.S. de Vries, K. Kleinermanns, Phys. Chem. Chem. Phys. 3, 5466 (2001)CrossRefGoogle Scholar
  25. 25.
    C. Plützer, K. Kleinermanns, Phys. Chem. Chem. Phys. 4, 4877 (2002)CrossRefGoogle Scholar
  26. 26.
    N.J. Kim, Y.S. Kim, G. Jeong, T.K. Ahn, S.K. Kim, Int. J. Mass Spectrom. 219, 11 (2002)CrossRefADSGoogle Scholar
  27. 27.
    Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)CrossRefADSGoogle Scholar
  28. 28.
    P.J.M. van der Burgt, Eur. Phys. J. D 68, 135 (2014)CrossRefADSGoogle Scholar
  29. 29.
    P. Bernhardt, H.G. Paretzke, Int. J. Mass Spectrom. 223-224, 599 (2003) CrossRefADSGoogle Scholar
  30. 30.
    P. Możejko, L. Sanche, Radiat. Environ. Biophys. 42, 201 (2003)CrossRefGoogle Scholar
  31. 31.
    C. Champion, J. Chem. Phys. 138, 184306 (2013) CrossRefADSGoogle Scholar
  32. 32.
    M. Vinodkumar, Ch. Limbachiya, M. Barot, M. Swadia, A. Barot, Int. J. Mass Spectrom. 339-340, 16 (2013) CrossRefADSGoogle Scholar
  33. 33.
    A.B. Trofimov, J. Schirmer, V.B. Kobychev, A.W. Potts, D.M.P. Holland, L. Karlsson, J. Phys. B 39, 305 (2006)CrossRefADSGoogle Scholar
  34. 34.
    M. Barbatti, S. Ullrich, Phys. Chem. Chem. Phys. 13, 15492 (2011) CrossRefGoogle Scholar
  35. 35.
    K.B. Bravaya, O. Kostko, S. Dolgikh, A. Landau, M. Ahmed, A.I. Krylov, J. Phys. Chem. A 114, 12305 (2010) CrossRefGoogle Scholar
  36. 36.
    D.M. Close, K.T. Øhman, J. Phys. Chem. A 112, 11207 (2008) CrossRefGoogle Scholar
  37. 37.
    J. Roithová, D. Schröder, J. Loos, H. Schwarz, H.-C. Jankowiak, R. Berger, J. Chem. Phys. 122, 094306 (2005) CrossRefADSGoogle Scholar
  38. 38.
    F. Alvarado, S. Bari, R. Hoekstra, T. Schlathölter, J. Chem. Phys. 127, 034301 (2007) CrossRefADSGoogle Scholar
  39. 39.
    R. Brédy, J. Bernard, L. Chen, B. Wei, A. Salmoun, T. Bouchama, M.C. Buchet-Poulizac, S. Martin, Nucl. Instrum. Methods Phys. Res. B 235, 392 (2005) CrossRefADSGoogle Scholar
  40. 40.
    R. Brédy, J. Bernard, L. Chen, G. Montagne, B. Li, S. Martin, J. Chem. Phys. 130, 114305 (2009) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter J. M. van der Burgt
    • 1
    Email author
  • Sinead Finnegan
    • 1
  • Samuel Eden
    • 2
  1. 1.Department of Experimental PhysicsNational University of Ireland MaynoothMaynooth, Co. KildareIreland
  2. 2.Department of Physical SciencesThe Open UniversityMilton KeynesUK

Personalised recommendations