Advertisement

Structural and mechanic properties of RFeO3 with R = Y, Eu and La perovskites: a first-principles calculation

  • M. RomeroEmail author
  • R. Escamilla
  • V. Marquina
  • R. Gómez
Regular Article

Abstract

The structural and elastic properties of the RFeO3 phases with R = Y, Eu, and La were investigated using first-principles plane-wave pseudopotential density functional theory with the generalized gradient approximation (GGA). The ground state properties (equilibrium cell constants) agree well with the reported experimental results. Our results showed an increase in the unit-cell volume (V) with the increase of ionic radii. We calculate a set of elastic parameters (bulk modulus B VRH , shear modulus G VRH , Young’s modulus E VRH and Poisson’s ratio ν) in the framework of the Voigt-Reuss-Hill (VRH) approximation. The sound velocities (v l , v t ) and Debye temperature (θ D ) were calculated using these elastic moduli. The calculated elastic constants were positives and satisfy the well-known Born criteria, indicating that the orthorhombic structure is stable. Finally, the ratio G VRH /B VRH suggests that the RFeO3 phases are ductile in nature.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    Mineral Data Publishing, version 1, (2005) Google Scholar
  2. 2.
    N.N. Toan, S. Saukko, V. Lantto, Physica B 327, 279 (2003) CrossRefADSGoogle Scholar
  3. 3.
    N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)CrossRefADSGoogle Scholar
  4. 4.
    I. W rnhus, P.E. Vullum, R. Holmestad, T. Grande, K. Wiik, Solid State Ionics 176, 783 (2005) Google Scholar
  5. 5.
    F. Bidrawn, S. Lee, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 155, B660 (2008) CrossRefGoogle Scholar
  6. 6.
    N.A. Spaldin, Topics Appl. Phys. 105, 175 (2007) CrossRefGoogle Scholar
  7. 7.
    D.I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006)CrossRefADSGoogle Scholar
  8. 8.
    J.F. Scott, Nat. Mater. 6, 256 (2007)CrossRefADSGoogle Scholar
  9. 9.
    J.F. Craig, K.M. Rabe, Phys. Rev. Lett. 97, (2006) Google Scholar
  10. 10.
    June Hyuk Lee, et al., Nat. Lett. 466, 954 (2010)CrossRefADSGoogle Scholar
  11. 11.
    A. Wu, H. Shen, J. Xu, Z Wang, L. Jiang, L. Luo, S. Yuan, S. Cao, H. Zhang, Bull. Mater. Sci. 35, 259 (2012)CrossRefADSGoogle Scholar
  12. 12.
    A.V. Soldatov, N.A. Povahzynaja, I.G. Shvejtzer, Solid State Commun. 97, 53 (1996)CrossRefADSGoogle Scholar
  13. 13.
    J. Luning, F. Nolting, A. Scholl, H. Ohldag, J.W. Seo, J. Fompeyrine, J.-P. Locquet, J. Stohr, Phys. Rev. B 67, 214433 (2003) CrossRefADSGoogle Scholar
  14. 14.
    S. Qing-Gong, L. Li-Wei, Z. Hui, Y. Hui-Yu, D. Quan-Guo, Acta Physica Sinica 61, 107102 (2012) Google Scholar
  15. 15.
    Q. Zhang, S. Yunoki, J. Phys.: Conf. Ser. 400, 032126 (2012) ADSGoogle Scholar
  16. 16.
    N. Singh, J.Y. Rhee, J. Korean Phys. Soc. 53, 806 (2008)CrossRefADSGoogle Scholar
  17. 17.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), pp. 739−754Google Scholar
  18. 18.
    A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)Google Scholar
  19. 19.
    R. Hill, Proc. Phys. Soc. 65, 349 (1952)CrossRefADSGoogle Scholar
  20. 20.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005) Google Scholar
  21. 21.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002) ADSGoogle Scholar
  22. 22.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    M.C. Payne, M.P. Teter, D.C. Allan, D.C. Allan, T.A. Arias, J.D.J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) CrossRefADSGoogle Scholar
  24. 24.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  25. 25.
    B. Pfrommer, G.M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997) CrossRefADSGoogle Scholar
  26. 26.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    D.R. Hammann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979) CrossRefADSGoogle Scholar
  28. 28.
    Y.S. Zhao, D.J. Weidner, J.B. Parise, D.E. Cox, Phys. Earth Planet. Inter. 17, 17 (1993)CrossRefADSGoogle Scholar
  29. 29.
    R.D. Shannon, Acta Crystallogr. A 224, 751 (1976) CrossRefADSGoogle Scholar
  30. 30.
    D. du Boulay, E.N. Maslen, V.A. Streltsov, N. Ishizawa, Acta Crystallogr. B 51, 921 (1995)CrossRefGoogle Scholar
  31. 31.
    R. Maiti, S. Basu, D. Chakravorty. J. Magn. Magn. Mater. 321, 3274 (2009) CrossRefADSGoogle Scholar
  32. 32.
    K.T. Jacob, G. Rajitha, Solid State Ionics 32, 32 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. B 26, 2008 (1970) CrossRefGoogle Scholar
  34. 34.
    G.J. McCarthy, R.D. Fischer, J. Solid State Chem. 4, 340 (1972)CrossRefADSGoogle Scholar
  35. 35.
    M. Marezio, P.D. Dernier, Mater. Res. Bull. 6, 23 (1971)CrossRefGoogle Scholar
  36. 36.
    L. Mark, Crystal structure and defect property predictions in ceramic material (Imperial College, London, 2005) Google Scholar
  37. 37.
    M. Romero, R.W. Gómez, V. Marquina, J.L. Pérez-Mazariego, R. Escamilla, Physica B 443, 90 (2014)CrossRefADSGoogle Scholar
  38. 38.
    J.F. Nye, Physical Properties of Crystals (Claredon Press, Oxford, 1985)Google Scholar
  39. 39.
    M. Derras, N. Hamdad, Results Phys., 3, 61 (2013) CrossRefADSGoogle Scholar
  40. 40.
    G. Kh. Rozenberg, M.P. Pasternak, W.M. Xu, L.S. Dubrovinsky, S. Carlson, R.D. Taylor, Europhys. Lett. 71, 228 (2005)CrossRefADSGoogle Scholar
  41. 41.
    M. Etter, M. Muller, M. Hanfland, R.E. Dinnebier, Acta Crystallogr. B 70, 452 (2014)CrossRefGoogle Scholar
  42. 42.
    D.H. Chung, W.R. Buessem, F.W. Vahldiek, in Anisotropy in Single Crystal Refractory Compounds, edited by S.A. Mersol (Plenum Press, New York, 1968), p. 217Google Scholar
  43. 43.
    Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Metals and Hard Mater. 33, 93 (2012)CrossRefGoogle Scholar
  44. 44.
    L.O. Anderson, Phys. Chem. Solids 24, 909 (1963)CrossRefADSGoogle Scholar
  45. 45.
    J.P. Poirier, Introduction to the Physics of the Earthś Interior (Cambridge University Press, 2000)Google Scholar
  46. 46.
    S.C. Parida, S. K Rakshit, Ziley Singh, J. Solid State Chem. 181, 101 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Romero
    • 1
    Email author
  • R. Escamilla
    • 2
    • 3
  • V. Marquina
    • 1
  • R. Gómez
    • 1
  1. 1.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México
  2. 2.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México
  3. 3.Instituto Politécnico NacionalESIME-CulhuacánMéxico, D.F.México

Personalised recommendations