Adsorption of gases from SF6 decomposition on aluminum-doped SWCNTs: a density functional theory study

  • Xiaoxing ZhangEmail author
  • Yingang Gui
  • Ziqiang Dai
Regular Article


Adsorption of gases produced by SF6 decomposition (i.e., SO2, H2S, SOF2, SO2F2, and CF4) by aluminum-doped zigzag (8, 0) single-walled carbon nanotubes (Al-SWCNTs) was investigated based on first-principles density functional theory (DFT). Different binding sites were considered to determine the most stable structures. Furthermore, adsorption energy, density of state, band structure, frontier molecular orbital, and population were analyzed to interpret the mechanism of gas adsorption on the surface of Al-SWCNTs. The calculation results predicted that the Al atom acted as an active site to adsorb the SF6 decomposition products in the adsorption process. SO2, H2S, and CF4 molecules were adsorbed on the sidewall of Al-SWCNTs by physisorption, whereas SOF2 and SO2F2 were molecularly chemisorbed. Conductivity of Al-SWCNTs was increased when the gas molecules of SO2, H2S, and SO2F2 were adsorbed. Conversely, SOF2 adsorption slightly decreased the conductivity of the adsorption system. Al-SWCNTs were insensitive to CF4. The different responses in conductivity of Al-SWCNTs for different gas molecule adsorptions present a potential selective and sensitive gas detection sensor.


Molecular Physics and Chemical Physics 


  1. 1.
    S. Iijima, Nature 354, 56 (1991)CrossRefADSGoogle Scholar
  2. 2.
    P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 12, 750 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, J. Alloys Compd. 330-332, 654 (2002)CrossRefGoogle Scholar
  4. 4.
    S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)CrossRefADSGoogle Scholar
  5. 5.
    K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, Y. Zhao, S. Fan, Nano Lett. 8, 700 (2008)CrossRefADSGoogle Scholar
  6. 6.
    M. Kalbac, Y.-P. Hsieh, H. Farhat, L. Kavan, M. Hofmann, J. Kong, M.S. Dresselhaus, Nano Lett. 10, 4619 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Q. Zhao, M. Buongiorno Nardelli, W. Lu, J. Bernholc, Nano Lett. 5, 847 (2005)CrossRefADSGoogle Scholar
  8. 8.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)CrossRefADSGoogle Scholar
  9. 9.
    J. Suehiro, H. Imakiire, S.-I. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara, Sensors Act. B 114, 943 (2006)CrossRefGoogle Scholar
  10. 10.
    N. Peng, Q. Zhang, Y.C. Lee, O.K. Tan, N. Marzari, Sensors Act. B 132, 191 (2008)CrossRefGoogle Scholar
  11. 11.
    Y. Lu, J. Li, J. Han, H.T. Ng, C. Binder, C. Partridge, M. Meyyappan, Chem. Phys. Lett. 391, 344 (2004)CrossRefADSGoogle Scholar
  12. 12.
    A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-C.P. Gabriel, J. Phys. Chem. B 110, 21014 (2006).CrossRefGoogle Scholar
  13. 13.
    K. Azizi, M. Karimpanah, Appl. Surf. Sci. 285, 102 (2013)CrossRefADSGoogle Scholar
  14. 14.
    X. Zhang, B. Yang, W. Liu, J. Zhang, Procedia Eng. 29, 4107 (2012)CrossRefGoogle Scholar
  15. 15.
    T. Ju, L. Fan, Z. Xiaoxing, R. Xiaolong, F. Min, Plasma Sci. IEEE Trans. 40, 56 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Delley, J. Chem. Phys. 92, 508 (1990)CrossRefADSGoogle Scholar
  17. 17.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)CrossRefADSGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof 77, 3865 (1996)Google Scholar
  19. 19.
    H.-M. Wang, H.-X. Wang, Y. Chen, Y.-J. Liu, J.-X. Zhao, Q.-H. Cai, X.-Z. Wang, Appl. Surf. Sci. 273, 302 (2013)CrossRefADSGoogle Scholar
  20. 20.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)CrossRefADSGoogle Scholar
  21. 21.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)CrossRefADSGoogle Scholar
  22. 22.
    R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, J. Mol. Struct. (Theochem) 806, 93 (2007)CrossRefGoogle Scholar
  23. 23.
    T. Ju, L. Fan, Z. Xiaoxing, M. Qinghong, Z. Jiabin, Dielectrics and Electrical Insulation, IEEE Trans. 19, 29 (2012)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Q. Chen, J. Tang, W. Hu, J. Zhang, Sci. Rep. 4, 4762 (2014)ADSGoogle Scholar
  25. 25.
    X. Zhang, Q. Chen, W. Hu, J. Zhang, Appl. Surf. Sci. 286, 47 (2013)CrossRefADSGoogle Scholar
  26. 26.
    A.F. Sammells, M. Schwartz, R.A. Mackay, T.F. Barton, D.R. Peterson, Catal. Today 56, 325 (2000)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, Y. Gui, Z. Dai, Appl. Surf. Sci. 315, 196 (2014)CrossRefADSGoogle Scholar
  28. 28.
    X. Pan, Q.-X. Cai, W.-L. Chen, G.-L. Zhuang, X.-N. Li, J.-G. Wang, Comput. Mater. Sci. 67, 174 (2013)CrossRefGoogle Scholar
  29. 29.
    E.L. Reddy, V.M. Biju, C. Subrahmanyam, Int. J. Hydrogen Energy 37, 2204 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Mubeen, T. Zhang, N. Chartuprayoon, Y. Rheem, A. Mulchandani, N.V. Myung, M.A. Deshusses, Anal. Chem. 82, 250 (2009)CrossRefGoogle Scholar
  31. 31.
    R.T. Sanderson, J. Am. Chem. Soc. 105, 2259 (1983)CrossRefGoogle Scholar
  32. 32.
    A.M. Casanovas, J. Casanovas, V. Dubroca, F. Lagarde, A. Belarbi, J. Appl. Phys. 70, 1220 (1991)CrossRefADSGoogle Scholar
  33. 33.
    W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 12974 (1996)CrossRefGoogle Scholar
  34. 34.
    T.P. McNicholas, K. Zhao, C. Yang, S.C. Hernandez, A. Mulchandani, N.V. Myung, M.A. Deshusses, J. Phys. Chem. C 115, 13927 (2011)CrossRefGoogle Scholar
  35. 35.
    X. Zhou, W.Q. Tian, X.-L. Wang, Sensors Act. B 151, 56 (2010)CrossRefGoogle Scholar
  36. 36.
    Z. Xiaoxing, M. Fansheng, W. Zhen, L. Jian, Electrical Insulation Conference, IEEE Xplore 132 (2011)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing UniversityChongqingP.R. China
  2. 2.School of Electrical EngineeringWuhan UniversityWuhanP.R. China
  3. 3.Liupanshui Power Supply Bureau of Guizhou Power Grid CorporationGuizhouP.R. China

Personalised recommendations