Rare reaction channels in real-time time-dependent density functional theory: the test case of electron attachment

  • Lionel Lacombe
  • P. Huong Mai DinhEmail author
  • Paul-Gerhard Reinhard
  • Eric Suraud
  • Leon Sanche
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy


We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3−16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability.

Graphical abstract


Electron Attachment Initial Kinetic Energy Dissociative Electron Attachment Incoming Electron Spatial Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.M. Pimblott, J.A. LaVerne, J. Phys. Chem. A 102, 2967 (1998)CrossRefGoogle Scholar
  2. 2.
    L. Sanche, Radiat. Phys. Chem. 32, 269 (1988)ADSGoogle Scholar
  3. 3.
    L. Sanche, Biological and Medical Physics, Biomedical Engineering, in Radiation Damage in Biomolecular Systems, edited by G. Gómez-Tejedor, M. Fuss (Springer, 2012), Chap. 1, p. 3Google Scholar
  4. 4.
    Materials Research Society Proceedings, edited by V.M. Donnelly, I.P. Herman, M. Hirose, (Cambridge University Press, Pittsburg, 1987), Vol. 75Google Scholar
  5. 5.
    R.D. Ramsier, J.T. Yates, Jr, Surf. Sci. Rep. 12, 243 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Desorption Induced by Electronic Transitions DIET III, of Springer Series in Surfaces Sciences, edited by R.H. Stulen, M.L. Knotek (Springer-Verlag, Berlin, 1988), Vol. 13Google Scholar
  7. 7.
    T.D. Harris, D.H. Lee, M.Q. Blumberg, C.R. Arumainayagam, J. Phys. Chem. 99, 9530 (1995)CrossRefGoogle Scholar
  8. 8.
    Energetic Charged-particle Interactions with Atmospheres and Surfaces, of Physics and Chemistry in Space, edited by R.E. Johnson (Springer-Verlag, Berlin, 1988), Vol. 19Google Scholar
  9. 9.
    L. Sanche, IEEE Transactions on Dielectrics and Electrical Insulation 4, 507 (1997)CrossRefGoogle Scholar
  10. 10.
    L. Sanche, J. Phys. B 23, 1597 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    I. Baccarelli, I. Bald, F. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Arumainayagam, H. Lee, R.B. Nelson, D.R. Haines, R. Gunawardane, Surf. Sci. Rep. 65, 1 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    L. Sanche, in Radical and Radical Ion Reactivity in Nucleic Acid Chemistry, edited by M. Greenberg (John Wiley and Sons, New Jersey, 2009), Chap. 9, pp. 239–293Google Scholar
  14. 14.
    S.M. Pimblott, J.A. LaVerne, Radiat. Phys. Chem. 76, 1244 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    E.J. Hall, A.J. Giaccia, Radiobiology for the Radiologist, 7th eds. (Lippincott Williams and Wilkins, Philadelphia, 2011)Google Scholar
  16. 16.
    M. O’Driscoll, P.A. Jeggo, Nat. Rev. Gen. 7, 45 (2006)CrossRefGoogle Scholar
  17. 17.
    C.V. Sonntag, The Chemical Basis of Radiation Biology (Taylor and Francis, London, 1987)Google Scholar
  18. 18.
    M.D. Sevilla, W.A. Bernhard, Mechanisms of direct radiation damage to DNA (EDP Sciences, Les Ulis, 2008), Chap. 13Google Scholar
  19. 19.
    S. Uehara, H. Nikjoo, D. Goodhead, Radiat. Res. 152, 202 (1999)CrossRefGoogle Scholar
  20. 20.
    J.F. Wishart, B.M.S. Rao, Recent Trends in Radiation Chemistry (World Scientific, UK, 2010)Google Scholar
  21. 21.
    P. O’Neill, in Radiation Chemistry: Present Status and Future Trends, edited by C.D. Jonah, B.S.M. Rao (Elsevier Science, Amsterdam, 2001), Chap. 21Google Scholar
  22. 22.
    B.D. Michael, P.A. O’Neill, Science 287, 1603 (2000)CrossRefGoogle Scholar
  23. 23.
    J. Nguyen, Y. Ma, T. Luo, R.G. Bristow, D.A. Jaffray, Q.B. Lu, Proc. Natl. Acad. Sci. USA 108, 11778 (2011)CrossRefGoogle Scholar
  24. 24.
    I. Bald, E. Illenberger, I. Kopyra, J. Phys.: Conf. Ser. 373, 012008 (2012)ADSGoogle Scholar
  25. 25.
    E. Alizadeh, L. Sanche, Chem. Rev. 112, 5578 (2012)CrossRefGoogle Scholar
  26. 26.
    E. Alizadeh, A.G. Sanz, G. García, L. Sanche, J. Phys. Chem. Lett. 4, 820 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Bhowmick, B. Renjith, M.K. Mishra, M. Sarma, J. Chem. Phys. 137, 064310 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M. Smyth, J. Kohanoff, Phys. Rev. Lett. 106, 238108 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Mašín, J.D. Gorfinkiel, J. Chem. Phys. 137, 204312 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    N.G. Adams, V. Poterya, L.M. Babcock, Mass Spectrom. Rev. 25, 798 (2006)CrossRefGoogle Scholar
  31. 31.
    L. Vejby-Christensen, L.H. Andersen, O. Heber, D. Kella, H.B. Pedersen, H.T. Schmidt, D. Zajfman, Astrophys. J. 483, 531 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    A. Neau et al., J. Chem. Phys. 113, 1762 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    M.B. Nøagøard, J.B.C. Pettersson, A.M. Derkatch, A. Al Khalili, A. Neau, S. Rosén, M. Larsson, J. Semaniak, H. Danared, A. Källberg et al., J. Chem. Phys. 117, 5264 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    N.B. Ram, V.S. Prabhudesai, E. Krishnakumar, J. Phys. B 42, 225203 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    M. Knapp, O. Echt, D. Kreisle, E. Recknagel, J. Phys. Chem. 91, 2601 (1987)CrossRefGoogle Scholar
  36. 36.
    J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, J. Phys. B 35, 543 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    J. Tennyson, Phys. Rep. 491, 29 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    N. Douguet, S.F. dos Santos, M. Raoult, O. Dulieu, A.E. Orel, V. Kokoouline, Phys. Rev. A 88, 052710 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    E.K.U. Gross, J.F. Dobson, M. Petersilka, Top. Curr. Chem. 181, 81 (1996)CrossRefGoogle Scholar
  40. 40.
    P.G. Reinhard, E. Suraud, Introduction to Cluster Dynamics (Wiley, New York, 2004)Google Scholar
  41. 41.
    Time-dependent density functional theory of Lecture Notes in Physics, edited by M.A.L. Marques, C.A. Ullrich, F. Nogueira (Springer, Berlin, 2006), Vol. 706Google Scholar
  42. 42.
    H. Reinhardt, Mean-field Theory of Nuclear Dynamics, in Time-dependent Hartree-Fock and Beyond, edited by K. Goeke, P.G. Reinhard (Springer, Berlin and Heidelberg, New York, 1982), Vol. 171 of Lecture Notes in Physics, p. 265Google Scholar
  43. 43.
    P.G. Reinhard, E. Suraud, Ann. Phys. 216, 98 (1992)MathSciNetADSCrossRefzbMATHGoogle Scholar
  44. 44.
    E. Suraud, P.G. Reinhard, New J. Phys. 16, 063066 (2014)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    V. Blum, G. Lauritsch, J.A. Maruhn, P.G. Reinhard, J. Comput. Phys. 100, 364 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)MathSciNetADSCrossRefzbMATHGoogle Scholar
  49. 49.
    J.W. Eastwood, D.R.K. Brownrigg, J. Comput. Phys. 32, 24 (1979)MathSciNetADSCrossRefzbMATHGoogle Scholar
  50. 50.
    J.A. Maruhn, P.G. Reinhard, P.D. Stevenson, A.S. Umar, Comput. Phys. Commun. 185, 2195 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    C.A. Ullrich, E.K.U. Gross, Commun. At. Mol. Phys. 33, 211 (1997)Google Scholar
  52. 52.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  53. 53.
    R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990)Google Scholar
  54. 54.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (International Series of Monographs on Chemistry) (Oxford University Press, USA, 1994)Google Scholar
  55. 55.
    T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.M. Dinh, P.G. Reinhard, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  57. 57.
    A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. Lett. 84, 5090 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    A. Pohl, P.G. Reinhard, E. Suraud, Phys. Rev. A 70, 023202 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    U. De Giovannini, D. Varsano, M.A.L. Marques, H. Appel, E.K.U. Gross, A. Rubio, Phys. Rev. A 85, 062515 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    P.G. Reinhard, P.D. Stevenson, D. Almehed, J.A. Maruhn, M.R. Strayer, Phys. Rev. E 73, 036709 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983)ADSCrossRefGoogle Scholar
  63. 63.
    E. Fermi, E. Amaldi, Accad. Ital. Rome 6, 117 (1934)Google Scholar
  64. 64.
    C. Legrand, E. Suraud, P.G. Reinhard, J. Phys. B 35, 1115 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    P. Klüpfel, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rev. A 88, 052501 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    J. Messud, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rev. Lett. 101, 096404 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    C.E. Melton, J. Chem. Phys. 57, 4218 (1972)ADSCrossRefGoogle Scholar
  68. 68.
    P. Rawat, V.S. Prabhudesai, G. Aravind, M.A. Rahman, E. Krishnakumar, J. Phys. B 40, 4625 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    J. Fedor et al., J. Phys. B 39, 3935 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    R.N. Compton, L.G. Christophorou, Phys. Rev. 154, 110 (1967)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lionel Lacombe
    • 1
    • 2
  • P. Huong Mai Dinh
    • 1
    • 2
    Email author
  • Paul-Gerhard Reinhard
    • 3
  • Eric Suraud
    • 1
    • 2
  • Leon Sanche
    • 4
  1. 1.Laboratoire de Physique Théorique (IRSAMC)Université de Toulouse, UPSToulouseFrance
  2. 2.Laboratoire de Physique Théorique (IRSAMC)CNRSToulouseFrance
  3. 3.Institut für Theoretische PhysikUniversität ErlangenErlangenGermany
  4. 4.Département de médecine nucléaire et de radiobiologieUniversité de SherbrookeSherbrookeCanada

Personalised recommendations