Integration of the low-energy particle track simulation code in Geant4

  • Pedro Arce
  • Antonio Muñoz
  • Montserrat Moraleda
  • José María Gomez Ros
  • Fernando Blanco
  • José Manuel Perez
  • Gustavo García
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy


The Low-Energy Particle Track Simulation code (LEPTS) is a Monte Carlo code developed to simulate the damage caused by radiation at molecular level. The code is based on experimental data of scattering cross sections, both differential and integral, and energy loss data, complemented with theoretical calculations. It covers the interactions of electrons and positrons from energies of 10 keV down to 0.1 eV in different biologically relevant materials. In this article we briefly mention the main characteristics of this code and we present its integration within the Geant4 Monte Carlo toolkit.

Graphical abstract


Electron Attachment Monte Carlo Code Rotational Excitation Track Simulation Positronium Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Muñoz, M. Fuss, M.A. Cortés-Giraldo, S. Incerti, V. Ivanchenko, A. Ivanchenko, J.M. Quesada, F. Salvat, C. Champion, G. García, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor, M.C. Fuss (Springer, Netherlands, 2012), p. 203Google Scholar
  2. 2.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, F.A. Cucinotta, Radiat. Meas. 41, 1052 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Radiat. Res. 157, 3, 227 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Gohlke, H. Abdoul-Carime, E. Illenberger, Chem. Phys. Lett. 380, 595 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, M. Farizon, E. Illenberger, T.D. Märk, Phys. Rev. Lett. 90, 188104 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. Muñoz, J.M. Perez, G. García, F. Blanco, Nucl. Instrum. Methods A 536, 176 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    M. Fuss, A.G. Sanz, A. Muñoz, F. Blanco, M. Téllez, C. Huerga, G. García, in Biomedical Engineering Trends in Electronics, Communications and Software, edited by A.N. Laskovski (InTech, Rijeka, 2011), p. 277Google Scholar
  9. 9.
    S. Agostinelli, et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Muñoz, F. Blanco, J.C. Oller, J.M. Pérez, G. García, Adv. Quantum Chem. 52, 21 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Muñoz, F. Blanco, G. García, P.A. Thorn, M.J. Brunger, J.P. Sullivan, S.J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M.C. Fuss, A. Muñoz, J.C. Oller, F. Blanco, D. Almeida, P. Limao-Vieira, T.P.D. Do, M.J. Brunger, G. García, Phys. Rev. A 80, 052709 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M.C. Fuss, A. Muñoz, J.C. Oller, F. Blanco, M.J. Hubin-Franskin, D. Almeida, P. Limao-Vieira, G. García, Chem. Phys. Lett. 486, 110 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    W. Tattersall, L. Chiari, J.R. Machacek, E. Anderson, R.D. White, M.J. Brunger, S.J. Buckman, G. García, F. Blanco, J.P. Sullivan, J. Chem. Phys. 140, 044320 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    F. Blanco, G. García, Phys. Lett. A 295, 178 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    F. Blanco, G. García, Phys. Rev. A 67, 022701 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    F. Blanco, G. García, Phys. Lett. A 317, 458 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    F. Blanco, G. García, Phys. Lett. A 330, 230 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    F. Blanco, G. García, J. Phys. B 42, 145203 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M.C. Fuss, A.G. Sanz, A. Muñoz, T.P.D. Do, K. Nixon, M.J. Brunger, M.J. Hubin-Franskin, J.C. Oller, F. Blanco, G. García, Chem. Phys. Lett. 560, 22 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, M.C. Fuss, A.G. Sanz, G. García, Eur. Phys. J. D. 67, 199 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    F. Blanco, A. Muñoz, D. Almeida, F. Ferreira da Silva, P. Limão-Vieira, G. García, Int. J. Mass Spectrom. 365-366, 287 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    D. Liljequist, H. Nikjoo, Rad. Phys. Chem. 99, 45 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, S. Guatelli, P. Guèye, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, A. Rosenfeld, C. Villagrasa, C. Zacharatou, Int. J. Model. Simul. Sci. Comput. 1, 157 (2010)CrossRefGoogle Scholar
  26. 26.
    M.E. Rudd, T.V. Goffe, R.D. Dubois, L.H. Toburen, Phys. Rev. A 31, 492 (1985)ADSCrossRefGoogle Scholar
  27. 27.
    M.E. Rudd, Phys. Rev. A 38, 6129 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Pedro Arce
    • 1
  • Antonio Muñoz
    • 2
  • Montserrat Moraleda
    • 3
  • José María Gomez Ros
    • 3
  • Fernando Blanco
    • 4
  • José Manuel Perez
    • 5
  • Gustavo García
    • 6
    • 7
  1. 1.Medical Applications Unit, CIEMATMadridSpain
  2. 2.Scientific Computing Unit, CIEMATMadridSpain
  3. 3.Dosimetry of Ionizing Radiations Unit, CIEMATMadridSpain
  4. 4.Department of AtomicMolecular and Nuclear Physics, Universidad Complutense de Madrid, Ciudad UniversitariaMadridSpain
  5. 5.Technology Department, CIEMATMadridSpain
  6. 6.Instituto de Física Fundamental, Consejo Superior de Investigaciones CientíficasMadridSpain
  7. 7.Centre for Medical Radiation Physics, University of WollongongWollongongAustralia

Personalised recommendations