On the use of additivity rules to estimate electron production cross sections in proton-biomolecule collisions

  • Sergio Paredes
  • Clara Illescas
  • L. MéndezEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy


Additivity rules are employed to estimate electron production cross sections for proton collisions with nucleobases and amino acids, using as input experimental data for proton collisions with atoms and small molecules. Cross sections (total and single differential, in electron energy) are calculated for collision energies 10 keV ≤ E ≤ 2 MeV. The results show that this simple procedure yields cross sections in good agreement with the available experimental and theoretical cross sections at high collision energies and it is able to reproduce the energy dependence of the total cross sections, including the presence of maxima at intermediate energies.

Graphical abstract


Uracil Total Cross Section Ionization Cross Section Electron Production Additivity Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Incerti et al., Med. Phys. 37 (2010)Google Scholar
  2. 2.
    M.U. Bug, E. Gargioni, H. Nettelbeck, W.Y. Baek, G. Hilgers, A.B. Rosenfeld, H. Rabus, Phys. Rev. E 88, 043308 (2013)CrossRefADSGoogle Scholar
  3. 3.
    H. Lekadir, I. Abbas, C. Champion, O. Fojón, R.D. Rivarola, J. Hanssen, Phys. Rev. A 79, 062710 (2009)CrossRefADSGoogle Scholar
  4. 4.
    C. Champion, H. Lekadir, M.E. Galassi, O. Fojón, R.D. Rivarola, J. Hanssen, Phys. Med. Biol. 55, 6053 (2010)CrossRefGoogle Scholar
  5. 5.
    M.E. Galassi, C. Champion, P.F. Weck, R.D. Rivarola, O. Fojón, J. Hanssen, Phys. Med. Biol. 57, 2081 (2012)CrossRefGoogle Scholar
  6. 6.
    P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)CrossRefADSGoogle Scholar
  7. 7.
    J. Tabet, S. Eden, S. Feil, H. Abdoul-Carime, B. Farizon, M. Farizon, S. Ouaskit, T.D. Märk, Phys. Rev. A 81, 012711 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 032704 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 052719 (2011)CrossRefADSGoogle Scholar
  10. 10.
    A. Itoh, Y. Iriki, M. Imai, C. Champion, R.D. Rivarola, Phys. Rev. A 88, 052711 (2013)CrossRefADSGoogle Scholar
  11. 11.
    L.H. Toburen, W.E. Wilson, J. Chem. Phys. 66, 5202 (1977)CrossRefADSGoogle Scholar
  12. 12.
    L. Nagy, L. Végh, Phys. Rev. A 46, 284 (1992)CrossRefADSGoogle Scholar
  13. 13.
    Y. Jiang, J. Sun, L. Wan, J. Phys. B 30, 5025 (1997)CrossRefADSGoogle Scholar
  14. 14.
    F. Blanco, G. García, Phys. Lett. A 330, 230 (2004)CrossRefADSGoogle Scholar
  15. 15.
    F. Blanco, G. García, J. Phys. B 42, 145203 (2009)CrossRefADSGoogle Scholar
  16. 16.
    M.E. Rudd, T.V. Goffe, R.D. DuBois, L.H. Toburen, Phys. Rev. A 31, 492 (1985)CrossRefADSGoogle Scholar
  17. 17.
    T. Kirchner, H.J. Lüdde, M. Horbatsch, R.M. Dreizler, Phys. Rev. A 61, 052710 (2000)CrossRefADSGoogle Scholar
  18. 18.
    P.D. Fainstein, G.H. Olivera, R.D. Rivarola, Nucl. Instrum. Methods B 107, 19 (1996)CrossRefADSGoogle Scholar
  19. 19.
    C.C. Montanari, J.E. Miraglia, J. Phys. B 47, 015201 (2014)CrossRefADSGoogle Scholar
  20. 20.
    M. Galassi, R. Rivarola, M. Beuve, G. Olivera, P. Fainstein, Phys. Rev. A 62, 022701 (2000)CrossRefADSGoogle Scholar
  21. 21.
    C. Illescas, L.F. Errea, L. Méndez, B. Pons, I. Rabadán, A. Riera, Phys. Rev. A 83, 052704 (2011)CrossRefADSGoogle Scholar
  22. 22.
    M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986)CrossRefADSGoogle Scholar
  23. 23.
    M.E. Rudd, Y.K. Kim, D.H. Madison, J.W. Gallagher, Rev. Mod. Phys. 57, 965 (1985)CrossRefADSGoogle Scholar
  24. 24.
    M.K. Shukla, J. Leszczynski, Wiley Interdisciplinary Reviews: Computational Molecular Science 3, 637 (2013)Google Scholar
  25. 25.
    C. Champion et al., J. Phys.: Conf. Ser. 488, 012038 (2014)ADSGoogle Scholar
  26. 26.
    J.S. Kwiatkowski, J. Leszczyński, J. Phys. Chem. 100, 941 (1996)CrossRefGoogle Scholar
  27. 27.
    W.E. Wilson, L.H. Toburen, Phys. Rev. A 11, 1303 (1975)CrossRefADSGoogle Scholar
  28. 28.
    M.E. Rudd, Y.K. Kim, D.H. Madison, T.J. Gay, Rev. Mod. Phys. 64, 441 (1992)CrossRefADSGoogle Scholar
  29. 29.
    M. Rudd, Phys. Rev. A 38, 6129 (1988)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas de Fusión, Departamento de Química, módulo 13Universidad Autónoma de MadridMadridSpain

Personalised recommendations