Advertisement

A dipole-driven path for electron and positron attachments to gas-phase uracil and pyrimidine molecules: a quantum scattering analysis

  • Fabio Carelli
  • Francesco Antonio GianturcoEmail author
  • Jan Franz
  • Mauro Satta
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy

Abstract

Electron and positron scattering processes in the gas-phase are analysed for uracil and pyrimidine molecules using a multichannel quantum approach at energies close to threshold. The special effects on the scattering dynamics induced by the large dipole moments in both molecules on the spatial features of the continuum leptonic wavefunctions are here linked to the possible bound states of the Rydberg-like molecular anions or ‘positroned’ molecules which could be reached via further couplings with molecular internal degrees of freedom.

Graphical abstract

Keywords

Uracil Excess Electron Permanent Dipole Moment Dissociative Electron Attachment Dipole Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. von Sonntag, The chemical basis of Radiation Biology (Taylor & Francis, Philadelphia, 1987)Google Scholar
  2. 2.
    B. Boudaiffa, P. Clautier, D. Huntig, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSGoogle Scholar
  3. 3.
    I. Baccarelli, I. Bold, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSGoogle Scholar
  4. 4.
    G.A. Gallup, I.I. Fabrikant, Phys. Rev. A 83, 012706 (2011)ADSGoogle Scholar
  5. 5.
    S.R. Cherry, J.A. Sorensen, M.E. Phelps, Physics in Nuclear Medicine, 4th edn. (Elsevier, Philadelphia, 2012)Google Scholar
  6. 6.
    L. Stryer, Biochemistry, 4th edn. (W.H. Freeman, New York, 1995)Google Scholar
  7. 7.
    C.M. Surko, F.A. Gianturco, New Direction in Antimatter Chemistry and Physics (Dordrecht, Kluwer, 2001)Google Scholar
  8. 8.
    E. Alizadeh, L. Sanche, Chem. Rev. 112, 5578 (2012)Google Scholar
  9. 9.
    F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 120, 7446 (2012)ADSGoogle Scholar
  10. 10.
    S. Denifl, P. Sulzer, F. Zappa, S. Moser, B. Kräutler, O. Echt, D.K. Bohme, T.D. MÃd’rk, P. Scheier, Int. J. Mass. Spectrom. 277, 296 (2008)ADSGoogle Scholar
  11. 11.
    M. Charlton, J.W. Humbertson, Positron Physics (Cambridge University Press, Cambridge, UK, 2001)Google Scholar
  12. 12.
    J. Franz, F.A. Gianturco, I. Baccarelli, Eur. Phys. J. D 68, 183 (2014)ADSGoogle Scholar
  13. 13.
    J. Franz, F.A. Gianturco, Phys. Rev. A 88, 042711 (2013)ADSGoogle Scholar
  14. 14.
    E. Fermi, E. Teller, Phys. Rev. 72, 399 (1947)ADSzbMATHGoogle Scholar
  15. 15.
    O.H. Crawford, A. Dalgarno, Chem. Phys. Lett. 1, 23 (1967)ADSGoogle Scholar
  16. 16.
    O.H. Crawford, Proc. Roy. Soc. London 91, 279 (1967)Google Scholar
  17. 17.
    W.R. Garrett, Phys. Rev. A 3, 961 (1971)ADSGoogle Scholar
  18. 18.
    A.F. Jalbout, L. Adamowicz, Adv. Quantum Chem. 52, 231 (2007)ADSGoogle Scholar
  19. 19.
    S.B. King, M.A. Yandell, A.B. Stephansen, D.M. Neumark, J. Chem. Phys. 141, 224310 (2014)ADSGoogle Scholar
  20. 20.
    K. Koyanagi, Y. Kita, Y. Shigata, M. Tachikawa, Chem. Phys. Chem. 14, 3458 (2013)Google Scholar
  21. 21.
    R.R. Lucchese, F.A. Gianturco, Int. Rev. Phys. Chem. 15, 429 (1996)Google Scholar
  22. 22.
    F.A. Gianturco, A. Jain, Phys. Rep. 143, 348 (1986)ADSGoogle Scholar
  23. 23.
    S.L. Altmann, A.P. Cracknell, Rev. Mod. Phys. 37, 19 (1965)ADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    S. Hara, J. Phys. Soc. Jpn 22, 710 (1967)ADSGoogle Scholar
  25. 25.
    R.R. Lucchese, V. McKoy, Phys. Rev. A 28, 1382 (1983)ADSGoogle Scholar
  26. 26.
    R.R. Lucchese et al., in ePolyScat program, version E3Google Scholar
  27. 27.
    F. Carelli, F.A. Gianturco, M. Satta, F. Sebastianelli, Int. J. Mass. Spectrom. 365, 377 (2014)ADSGoogle Scholar
  28. 28.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSGoogle Scholar
  29. 29.
    N.T. Padial, D.W. Norcross, Phys. Rev. A 29, 1742 (1984)ADSGoogle Scholar
  30. 30.
    F.A. Gianturco, A. Jain, L.C. Pantano, J. Phys. B 20, 571 (1987)ADSGoogle Scholar
  31. 31.
    E. Boronski, R.M. Nieminen, Phys. Rev. 34, 3820 (1986)ADSGoogle Scholar
  32. 32.
    N. Oyler, L. Adamowicz, J. Chem. Phys. 917, 11122 (1995)Google Scholar
  33. 33.
    C. Desfrancois, H. Abdoul-Carime, S. Carles, V. Periquet, J.P. Schermann, D. Smith, L. Adamowicz, J. Chem. Phys. 110, 11876 (1999)ADSGoogle Scholar
  34. 34.
    C. Desfrancois, H. Abdoul-Carime, J.P. Schermann, J. Chem. Phys. 104, 7792 (1996)ADSGoogle Scholar
  35. 35.
    J.H. Hendricks, S.A. Lyapustina, H.L. de Clercq, K.H. Bowen, J. Chem. Phys. 108, 8 (1998)ADSGoogle Scholar
  36. 36.
    M. Mella, S. Chiesa, G. Morosi, J. Chem. Phys. 116, 2852 (2002)ADSGoogle Scholar
  37. 37.
    F.A. Gianturco, J. Franz, R.J. Buenker, H.-P. Liebermann, L. Pichl, J.-M. Rost, M. Tachikawa, M. Kimura, Phys. Rev. A 73, 022705 (2006)ADSGoogle Scholar
  38. 38.
    K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A 102, 6205 (1998)Google Scholar
  39. 39.
    F. Carelli, M. Satta, F.A. Gianturco, Eur. Phys. J. D 67, 230 (2013)ADSGoogle Scholar
  40. 40.
    R.A. Bachorz, W. Klopper, M. Gutowski, X. Li, K.H. Bowen, J. Chem. Phys. 129, 054309 (2008)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fabio Carelli
    • 1
  • Francesco Antonio Gianturco
    • 1
    • 2
    Email author
  • Jan Franz
    • 3
  • Mauro Satta
    • 4
  1. 1.Institute of Ion PhysicsThe University of InnsbruckInnsbruckAustria
  2. 2.Scuola Normale SuperiorePisaItaly
  3. 3.Department of Theoretical Physics and Quantum Informatics, Faculty of Applied Physics and MathematicsGdansk, University of TechnologyGdanskPoland
  4. 4.CNR-ISMN and University of Rome ‘Sapienza’RomeItaly

Personalised recommendations