Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond

  • Mayeul Chipaux
  • Alexandre Tallaire
  • Jocelyn Achard
  • Sébastien Pezzagna
  • Jan Meijer
  • Vincent Jacques
  • Jean-François Roch
  • Thierry Debuisschert
Regular Article

Abstract

The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using optically detected magnetic resonance (ODMR). In this work, we quantitatively map the vectorial structure of the magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The magnetic field reconstruction is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 μm2 area of the doped layer, equivalent to a sensor consisting of approximately 104 NV centers, is of the order of 2 μT/√Hz. The spatial resolution of the imaging device is 480 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The effectiveness of the method is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    D. Budker, M. Romalis, Nat. Phys. 3, 227 (2007)CrossRefGoogle Scholar
  2. 2.
    R. McDermott, S.K. Lee, B.T. Haken, A.H. Trabesinger, A. Pines, J. Clarke, Proc. Natl. Acad. Sci. USA 101, 7857 (2004) CrossRefADSGoogle Scholar
  3. 3.
    D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, Nature 430, 329 (2004) CrossRefADSGoogle Scholar
  4. 4.
    C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, Proc. Natl. Acad. Sci. 106, 1313 (2009) CrossRefADSGoogle Scholar
  5. 5.
    M.P. Ledbetter, I.M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D.J. Michalak, S. Xu, A. Pines, Proc. Natl. Acad. Sci. 105, 2286 (2008) CrossRefADSGoogle Scholar
  6. 6.
    S. Xu, V.V. Yashchuk, M.H. Donaldson, S.M. Rochester, D. Budker, A. Pines, Proc. Natl. Acad. Sci. 103, 12668 (2006) CrossRefADSGoogle Scholar
  7. 7.
    M. Vengalattore, J.M. Higbie, S.R. Leslie, J. Guzman, L.E. Sadler, D.M. Stamper-Kurn, Phys. Rev. Lett. 98, 200801 (2007) CrossRefADSGoogle Scholar
  8. 8.
    L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, V. Jacques, Rep. Prog. Phys. 77, 056503 (2014) CrossRefADSGoogle Scholar
  9. 9.
    R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Ann. Rev. Phys. Chem. 65, 83 (2014)CrossRefADSGoogle Scholar
  10. 10.
    A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Von Borczyskowski, Science 276, 2012 (1997) CrossRefGoogle Scholar
  11. 11.
    S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, A. Zaitsev, New J. Phys. 13, 035024 (2011) CrossRefADSGoogle Scholar
  12. 12.
    J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4, 810 (2008)CrossRefGoogle Scholar
  13. 13.
    P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, A. Yacoby, Nat. Nanotechnol. 7, 320 (2012)CrossRefADSGoogle Scholar
  14. 14.
    M.S. Grinolds, S. Hong, P. Maletinsky, L. Luan, M.D. Lukin, R.L. Walsworth, A. Yacoby, Nat. Phys. 9, 215 (2013)CrossRefGoogle Scholar
  15. 15.
    L. Rondin, J.-P. Tetienne, P. Spinicelli, C. Dal Savio, K. Karrai, G. Dantelle, A. Thiaville, S. Rohart, J.-F. Roch, V. Jacques, Appl. Phys. Lett. 100, 153118 (2012) CrossRefADSGoogle Scholar
  16. 16.
    J.-P. Tetienne, T. Hingant, J.-V. Kim, L. Herrera Diez, J.-P. Adam, K. Garcia, J.-F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, V. Jacques, Science 344, 1366 (2014) CrossRefADSGoogle Scholar
  17. 17.
    S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Rev. Sci. Instrum. 81, 043705 (2010) CrossRefADSGoogle Scholar
  18. 18.
    L.M. Pham, D. Le Sage, P.L. Stanwix, T.K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P.R. Hemmer, M.D. Lukin, H. Park, A. Yacoby, R.L. Walsworth, New J. Phys. 13, 045021 (2011) CrossRefADSGoogle Scholar
  19. 19.
    D. Le Sage, K. Arai, D.R. Glenn, S.J. DeVience, L.M. Pham, L. Rahn-Lee, M.D. Lukin, A. Yacoby, A. Komeili, R.L. Walsworth, Nature 496, 486 (2013) CrossRefADSGoogle Scholar
  20. 20.
    N. Manson, J. Harrison, M. Sellars, Phys. Rev. B 74, 104303 (2006) CrossRefADSGoogle Scholar
  21. 21.
    J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch, V. Jacques, New J. Phys. 14, 103033 (2012) CrossRefGoogle Scholar
  22. 22.
    A. Tallaire, A.T. Collins, D. Charles, J. Achard, R. Sussmann, A. Gicquel, M.E. Newton, A.M. Edmonds, R.J. Cruddace, Diam. Relat. Mater. 15, 1700 (2006) CrossRefADSGoogle Scholar
  23. 23.
    Almax easyLab bvba, http://www.almax-easylab.com
  24. 24.
    S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, J. Meijer, New J. Phys. 12, 065017 (2010) CrossRefADSGoogle Scholar
  25. 25.
    J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 87, 261909 (2005) CrossRefADSGoogle Scholar
  26. 26.
    S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, Chem. Phys. Lett. 332, 93 (2000)CrossRefADSGoogle Scholar
  27. 27.
    K. Levenberg, Quarterly Appl. Math. 2, 164 (1944)MathSciNetGoogle Scholar
  28. 28.
    D.W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963)MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nature 455, 644 (2008) CrossRefADSGoogle Scholar
  30. 30.
    R.S. Schoenfeld, W. Harneit, Phys. Rev. Lett. 106, 030802 (2011) CrossRefADSGoogle Scholar
  31. 31.
    M. Lesik, J.-P. Tetienne, A. Tallaire, J. Achard, V. Mille, A. Gicquel, J.-F. Roch, V. Jacques, Appl. Phys. Lett. 104, 113107 (2014) CrossRefADSGoogle Scholar
  32. 32.
    J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F. Dolde, P. Neumann, M.W. Doherty, N.B. Manson, J. Isoya, J. Wrachtrup, Appl. Phys. Lett. 104, 102407 (2014) CrossRefADSGoogle Scholar
  33. 33.
    T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, N. Tokuda, M. Hatano, Y. Sakagawa, H. Morishita, T. Tashima, S. Miwa, Y. Suzuki, N. Mizuochi, Appl. Phys. Express 7, 055201 (2014) CrossRefADSGoogle Scholar
  34. 34.
    K.-M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil, Appl. Phys. Lett. 96, 121907 (2010) CrossRefADSGoogle Scholar
  35. 35.
    A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, V. Jacques, Phys. Rev. B 84, 195204 (2011) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mayeul Chipaux
    • 1
  • Alexandre Tallaire
    • 2
  • Jocelyn Achard
    • 2
  • Sébastien Pezzagna
    • 3
  • Jan Meijer
    • 3
  • Vincent Jacques
    • 4
  • Jean-François Roch
    • 4
  • Thierry Debuisschert
    • 1
  1. 1.Thales Research & TechnologyPalaiseau CEDEXFrance
  2. 2.Laboratoire des Sciences des Procédés et des MatériauxCNRS and Université Paris 13VilletaneuseFrance
  3. 3.Institut für Experimentelle Physik IIUniversity LeipzigLeipzigGermany
  4. 4.Laboratoire Aimé Cotton, CNRSUniversité Paris-Sud and Ecole Normale Supérieure de CachanOrsayFrance

Personalised recommendations