Advertisement

Space-time curvature signatures in Bose-Einstein condensates

  • Tonatiuh Matos
  • Eduardo GomezEmail author
Regular Article

Abstract

We derive a generalized Gross-Pitaevski (GP) equation for a Bose Einstein Condensate (BEC) immersed in a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the traditional GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order gz/c 2 between them that could be measured in the future using Bose-Einstein Condensates. This represents the next order correction to the Newtonian gravity in a curved space-time.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 84, 1527 (2012)CrossRefADSGoogle Scholar
  2. 2.
    M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)CrossRefADSGoogle Scholar
  3. 3.
    S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Rev. D 78, 122002 (2008)CrossRefADSGoogle Scholar
  4. 4.
    S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, Phys. Rev. Lett. 98, 111102 (2007)CrossRefADSGoogle Scholar
  5. 5.
    G. Ferrari, N. Poli, F. Sorrentino, G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006)CrossRefADSGoogle Scholar
  6. 6.
    B. Lamine, R. Hervé, A. Lambrecht, S. Reynaud, Phys. Rev. Lett. 96, 050405 (2006)CrossRefADSGoogle Scholar
  7. 7.
    S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Phys. Rev. Lett. 111, 083001 (2013)CrossRefADSGoogle Scholar
  8. 8.
    T.V. Zoest et al., Science 328, 1540 (2010)CrossRefADSGoogle Scholar
  9. 9.
    R. Geiger et al., Nat. Commun. 2, 474 (2011)CrossRefADSGoogle Scholar
  10. 10.
    G.M. Tino et al., Nucl. Phys. B Proc. Suppl. 243-244, 203 (2013)CrossRefADSGoogle Scholar
  11. 11.
    C. Lämmerzahl, Phys. Lett. A 203, 12 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Suarez, T. Matos, Mon. Not. Roy. Astron. Soc. 416, 87 (2011)ADSGoogle Scholar
  13. 13.
    T. Matos, A. Suarez, Europhys. Lett. 96, 56005 (2011)CrossRefADSGoogle Scholar
  14. 14.
    A. Suárez, T. Matos, Class. Quantum Grav. 31, 045015 (2014)CrossRefADSGoogle Scholar
  15. 15.
    U. Leonhardt, Phys. Rev. A 62, 012111 (2000)CrossRefADSGoogle Scholar
  16. 16.
    C. Sabín, D.E. Bruschi, M. Ahmedi, I. Fuentes, New J. Phys. 16, 085003 (2014)CrossRefADSGoogle Scholar
  17. 17.
    D. Berttoni, M. Colombo, S. Liberati, J. Cosmol. Astropart. Phys. 02, 004 (2014)CrossRefADSGoogle Scholar
  18. 18.
    C. Ma, E. Bertschinger, Astrophys. J. 455, 7 (1995)CrossRefADSGoogle Scholar
  19. 19.
    L.A. Ureña-Lopez, Phys. Rev. D 90, 027306 (2014)CrossRefADSGoogle Scholar
  20. 20.
    A. Aviles, J.L. Cervantes-Cota, Phys. Rev. D 84, 083515 (2011) [Erratum-Phys. Rev. D 84, 089905 (2011)]CrossRefADSGoogle Scholar
  21. 21.
    R.V. Pound, G.A. Rebka, Phys. Rev. Lett. 4, 337 (1960)CrossRefADSGoogle Scholar
  22. 22.
    C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Science 329, 1630 (2010)CrossRefADSGoogle Scholar
  23. 23.
    P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. A 74, 052109 (2006)CrossRefADSGoogle Scholar
  24. 24.
    T. Matos, E. Castellanos, arXiv:1207.4416 [physics. gen-ph] (2012)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departamento de FísicaCentro de Investigación y Estudios Avanzados del IPN A. P. 14-740México, D.F.México
  2. 2.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations