Conformation and orientation dependence in ion-induced collisions with DNA and RNA building blocks

Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy

Abstract

Action of radiations on biological tissues is of major concern in cancer therapy development. Understanding the mechanisms involved at the molecular level in such reactions may be of crucial interest. In particular ion-induced ionization processes appear at the early stage of damage and a detailed analysis has been performed on the charge transfer dynamics of carbon ions with the different DNA and RNA building blocks in order to analyze their respective behavior in ion-induced collisions. We have considered the pyrimidine nucleobases uracil and thymine and the 5-halouracil molecules corresponding to the same skeleton, as well as the sugar moiety 2-deoxy-D-ribose. The calculations have been performed by means of ab initio quantum chemistry molecular methods followed by a semi-classical collision treatment in a wide collision energy range. Considerations of the structure of the biological target as well as analysis of the anisotropy of the process have been performed. The comparison with proton collisions has been developed with regard to previous results. Qualitative trends of interest for DNA building blocks damage may be pointed out.

Graphical abstract

References

  1. 1.
    C. von Sonntag, in The Chemical Basis for Radiation Biology (Taylor and Francis, London, 1987)Google Scholar
  2. 2.
    B.D. Michael, P.D. O’Neill, Science 287, 1603 (2000) CrossRefGoogle Scholar
  3. 3.
    V. Cobut, Y. Frongillo, J.P. Patau, T. Goulet, M.J. Fraser, J.P. Gay-Gerin, Radiat. Phys. Chem. 51, 229 (1998)CrossRefADSGoogle Scholar
  4. 4.
    B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) CrossRefADSGoogle Scholar
  5. 5.
    H. Abdoul-Carime, M.A. Huels, E. Illenberger, L. Sanche, J. Am. Chem. Soc. 123, 5354 (2001) CrossRefGoogle Scholar
  6. 6.
    F. Martin, P.D. Burrow, Z. Cai, P. Cloutier, D. Hunting, L. Sanche, Phys. Rev. Lett. 93, 068101 (2004) CrossRefADSGoogle Scholar
  7. 7.
    D. Almeida, M.C. Bacchus-Montabonel, F. Fereira da Silva, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 6547 (2014) CrossRefGoogle Scholar
  8. 8.
    J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlathölter, J. Phys. B 35, 4373 (2002) CrossRefADSGoogle Scholar
  9. 9.
    B. Coupier, B. Farizon, M. Farizon, M.J. Gaillard, F. Gobet, N.V. de Castro Faria, G. Jalbert, S. Ouaskit, M. Carré, B. Gstir, G. Hanel, S. Denifl, L. Feketeova, P. Scheier, T.D. Märk, Eur. Phys. J. D 20, 459 (2002)CrossRefADSGoogle Scholar
  10. 10.
    J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlathölter, Eur. Phys. J. D 24, 161 (2003)CrossRefADSGoogle Scholar
  11. 11.
    J. de Vries, R. Hoekstra, R. Morgenstern, T. Schlathölter, Phys. Rev. Lett. 91, 053401 (2003) CrossRefADSGoogle Scholar
  12. 12.
    F. Alvarado, S. Bari, R. Hoekstra, T. Schlathölter, Phys. Chem. Chem. Phys. 8, 1922 (2006)CrossRefGoogle Scholar
  13. 13.
    F. Alvarado, J. Bernard, B. Lin, R. Brédy, L. Chen, R. Hoekstra, S. Martin, T. Schlathölter, ChemPhysChem 9, 1254 (2008)CrossRefGoogle Scholar
  14. 14.
    M.C. Bacchus-Montabonel, M. Łabuda, Y.S. Tergiman, J.E. Sienkiewicz, Phys. Rev. A 72, 052706 (2005) CrossRefADSGoogle Scholar
  15. 15.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, Phys. Chem. Chem. Phys. 13, 9761 (2011) CrossRefGoogle Scholar
  16. 16.
    M.C. Bacchus-Montabonel, J. Phys. Chem. A 118, 6326 (2014) CrossRefGoogle Scholar
  17. 17.
    P. López-Tarifa, M.P. Gaigeot, R. Vuilleumier, I. Tavernelli, M. Alcamí, F. Martín, M.A. Hervé du Penhoat, M.F. Politis, Angw. Chem. 125, 3242 (2013) CrossRefGoogle Scholar
  18. 18.
    S. Lacombe, C. Le Sech, V.A. Esaulov, Phys. Med. Biol. 49, N65 (2004)CrossRefGoogle Scholar
  19. 19.
    A. Wambersie, in Atomic and molecular data for radiotherapy and radiation research (IAEA, 1995), p. 7Google Scholar
  20. 20.
    U. Weber, W. Becher, G. Kraft, Phys. Med. Biol. 45, 3627 (2000) CrossRefGoogle Scholar
  21. 21.
    M.C. Bacchus-Montabonel, Eur. Phys. J. D 66, 175 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Z. Deng, I. Bald, E. Illenberger, M.A. Huels, Phys. Rev. Lett. 95, 153201 (2005) CrossRefADSGoogle Scholar
  23. 23.
    Z. Deng, M. Imhoff, M.A. Huels, J. Chem. Phys. 123, 144509 (2005) CrossRefADSGoogle Scholar
  24. 24.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, Chem. Phys. Lett. 503, 45 (2011)CrossRefADSGoogle Scholar
  25. 25.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, Comput. Theor. Chem. 990, 177 (2012) CrossRefGoogle Scholar
  26. 26.
    O. González-Magaña, M. Tiemens, G. Reitsma, L. Boschman, M. Door, S. Bari, P.O. Lahaie, J.R. Wagner, M.A. Huels, R. Hoekstra, T. Schlathölter, Phys. Rev. A 87, 032702 (2013) CrossRefADSGoogle Scholar
  27. 27.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, D. Talbi, Phys. Rev. A 79, 012710 (2009) CrossRefADSGoogle Scholar
  28. 28.
    L.P. Guler, Y.Q. Yu, H.I. Kenttämaa, J. Phys. Chem. A 106, 6754 (2002) CrossRefGoogle Scholar
  29. 29.
    D.T. Ha, M.A. Huels, M. Huttula, S. Urpelainen, E. Kukk, Phys. Rev. A 84, 033419 (2011) CrossRefADSGoogle Scholar
  30. 30.
    D. Almeida, F. Ferreira da Silva, G. Garcia, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013) CrossRefADSGoogle Scholar
  31. 31.
    M.C. Bacchus-Montabonel, Appl. Radiat. Isotopes 83, 95 (2014)CrossRefGoogle Scholar
  32. 32.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, Phys. Rev. A 74, 054702 (2006) CrossRefADSGoogle Scholar
  33. 33.
    L. Salem, in Electrons in Chemical Reactions: First principles (Wiley Interscience, New York, 1982) Google Scholar
  34. 34.
    E. Bene, P. Martinez, G.J. Halász, Á. Vibók, M.C. Bacchus-Montabonel, Phys. Rev. A 80, 012711 (2009) CrossRefADSGoogle Scholar
  35. 35.
    M.C. Bacchus-Montabonel, D. Talbi, M. Persico, J. Phys. B 33, 955 (2000)CrossRefADSGoogle Scholar
  36. 36.
    MOLPRO (version 2012.1) is a package ab initio programs written by H.-J. Werner, P. J. KnowlesGoogle Scholar
  37. 37.
    A. Becke, Phys. Rev. A 38, 3098 (1988) CrossRefADSGoogle Scholar
  38. 38.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 43, 1993 (1991) CrossRefGoogle Scholar
  39. 39.
    P. López-Tarifa, M.A. Hervé du Penhoat, R. Vuilleumier, M.P. Gaigeot, I. Tavernelli, A. Le Padellec, J.P. Champeaux, M. Alcamí, P. Moretto-Capelle, F. Martín, M.F. Politis, Phys. Rev. Lett. 107, 023202 (2011) CrossRefADSGoogle Scholar
  40. 40.
    M.C. Bacchus-Montabonel, L. Wiesenfeld, Chem. Phys. Lett. 583, 23 (2013)CrossRefADSGoogle Scholar
  41. 41.
    P. Honvault, M. Gargaud, M.C. Bacchus-Montabonel, R. McCarroll, A&A 302, 931 (1995) ADSGoogle Scholar
  42. 42.
    M.C. Bacchus-Montabonel, Phys. Rev. A 46, 217 (1992)CrossRefADSGoogle Scholar
  43. 43.
    P.C. Stancil, B. Zygelman, K. Kirby, in Photonic, Electronic, and Atomic Collisions, edited by F. Aumayr, H.P. Winter (World Scientific, Singapore, 1998), p. 537Google Scholar
  44. 44.
    V. Sidis, Adv. At. Mol. Opt. Phys. 26, 161 (1990)CrossRefADSGoogle Scholar
  45. 45.
    A. Chenel, E. Mangaud, Y. Justum, D. Talbi, M.C. Bacchus-Montabonel, M. Desouter-Lecomte, J. Phys. B 43, 245701 (2010) CrossRefADSGoogle Scholar
  46. 46.
    R. Linguerri, M. Hochlaf, M.C. Bacchus-Montabonel, M. Desouter-Lecomte, Phys. Chem. Chem. Phys. 15, 824 (2013)CrossRefGoogle Scholar
  47. 47.
    M.C. Bacchus-Montabonel, Y.S. Tergiman, Chem. Phys. Lett. 497, 18 (2010)CrossRefADSGoogle Scholar
  48. 48.
    R.J. Allan, C. Courbin, P. Salas, P. Wahnon, J. Phys. B 23, L461 (1990) CrossRefADSGoogle Scholar
  49. 49.
    M.C. Bacchus-Montabonel, J. Phys. Chem. A 117, 14169 (2013) CrossRefGoogle Scholar
  50. 50.
    M.A. Hervé du Penhoat, P. Lopez-Tarifa, K.K. Ghose, Y. Jeanvoine, M.P. Gaigeot, R. Vuilleumier, M.F. Politis, M.C. Bacchus-Montabonel, J. Mol. Model. 20, 2221 (2014) CrossRefGoogle Scholar
  51. 51.
    C. Illescas, L.F. Errea, L. Méndez, B. Pons, I. Rabadán, in AIP Conference Proceeding 1525, 23 (2013)Google Scholar
  52. 52.
    C. Illescas, L.F. Errea, L. Méndez, Phys. Scr. T156, 014033 (2013) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne CedexFrance

Personalised recommendations