Advertisement

Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium

  • Alexey VerkhovtsevEmail author
  • Sally McKinnon
  • Pablo de Vera
  • Eugene Surdutovich
  • Susanna Guatelli
  • Andrei V. Korol
  • Anatoly Rosenfeld
  • Andrey V. Solov’yov
Regular Article
Part of the following topical collections:
  1. Topical Issue: COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy

Abstract

The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dominant role. Electron yield from a solid carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated to be several times higher than that from liquid water. Decay of plasmon excitations in carbon-based nanosystems thus represents a mechanism of increase of the low-energy electron yield, similar to the case of sensitizing metal nanoparticles. This observation gives a hint for investigation of novel types of sensitizers to be composed of metallic and organic parts.

Graphical abstract

Keywords

Fullerene Carbon Nanoparticle Electron Yield Plasmon Excitation Fast Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Delaney, S. Jacob, C. Featherstone, M. Barton, Cancer 104, 1129 (2005)CrossRefGoogle Scholar
  2. 2.
    European COST Action “Nanoscale insights into Ion-Beam Cancer Therapy” (Nano-IBCT), http://www.cost.eu/domains_actions/mpns/Actions/nano-ibct/
  3. 3.
    FP7 Initial Training Network Project “Advanced Radiotherapy, Generated by Exploiting Nanoprocesses and Technologies” (ARGENT), http://www.itn-argent.eu
  4. 4.
    I. Bacarelli, F.A. Gianturco, E. Scifoni, A.V. Solov’yov, E. Surdutovich, Eur. Phys. J. D 60, 1 (2010)CrossRefADSGoogle Scholar
  5. 5.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)CrossRefADSGoogle Scholar
  6. 6.
    M. Durante, J.S. Loeffler, Nat. Rev. Clin. Oncol. 7, 37 (2010)CrossRefGoogle Scholar
  7. 7.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)CrossRefADSGoogle Scholar
  8. 8.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)CrossRefADSGoogle Scholar
  9. 9.
    B.D. Michael, P. O’Neill, Science 287, 1603 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Denifl, T.D. Märk, P. Scheier, in Radiation Damage in Biomolecular Systems, edited by G. Garcia Gomez-Tejedor, M.C. Fuss (Springer Science, Business Media B.V., 2012), p. 45Google Scholar
  11. 11.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)CrossRefADSGoogle Scholar
  12. 12.
    M.A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, L. Sanche, J. Am. Chem. Soc. 125, 4467 (2003)CrossRefGoogle Scholar
  13. 13.
    D.M. Herold, I.J. Das, C.C. Stobbe, R.V. Iyer, J.D. Chapman, Int. J. Radiat. Biol. 76, 1357 (2000)CrossRefGoogle Scholar
  14. 14.
    J.J. Hainfeld, D.N. Slatkin, H.M. Smilowitz, Phys. Med. Biol. 49, N309 (2004)CrossRefGoogle Scholar
  15. 15.
    S.J. McMahon et al., Sci. Rep. 1, 18 (2011); (Corrigendum: Sci. Rep. 3, 1725 (2013))CrossRefADSGoogle Scholar
  16. 16.
    W. Chen, J. Zhang, J. Nanosci. Nanotechnol. 6, 1159 (2006)CrossRefGoogle Scholar
  17. 17.
    E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Nanotechnology 21, 085103 (2010)CrossRefADSGoogle Scholar
  18. 18.
    F. Xiao, Y. Zheng, P. Cloutier, Y. He, D. Hunting, L. Sanche, Nanotechnology 22, 465101 (2011)CrossRefADSGoogle Scholar
  19. 19.
    Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Radiat. Res. 169, 19 (2008); (Erratum: Radiat. Res. 169, 481 (2008))CrossRefGoogle Scholar
  20. 20.
    C. Sicard-Roselli et al., Small 10, 3338 (2014)CrossRefGoogle Scholar
  21. 21.
    E. Porcel et al., Nanomed. Nanotech. Biol. Med. 10, 1601 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Štefančíková, et al., Cancer Nanotech. 5, 6 (2014)CrossRefGoogle Scholar
  23. 23.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 114, 063401 (2015)CrossRefADSGoogle Scholar
  24. 24.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys. Chem. C (in print), DOI: 10.1021/jp511419nGoogle Scholar
  25. 25.
    I.V. Hertel, H. Steger, J. de Vries, B. Weisser, C. Menzel, B. Kamke, W. Kamke, Phys. Rev. Lett. 68, 784 (1992)CrossRefADSGoogle Scholar
  26. 26.
    Ph. Lambin, A.A. Lucas, J.-P. Vigneron, Phys. Rev. B 46, 1794 (1992)CrossRefADSGoogle Scholar
  27. 27.
    L.G. Gerchikov, P.V. Efimov, V.M. Mikoushkin, A.V. Solov’yov, Phys. Rev. Lett. 81, 2707 (1998)CrossRefADSGoogle Scholar
  28. 28.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, P. Bolognesi, A. Ruocco, L. Avaldi, J. Phys. B 45, 141002 (2012)CrossRefADSGoogle Scholar
  29. 29.
    B.P. Kafle, H. Katayanagi, M. Prodhan, H. Yagi, C. Huang, K. Mitsuke, J. Phys. Soc. Jpn 77, 014302 (2008)CrossRefADSGoogle Scholar
  30. 30.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Phys. Rev. A 88, 043201 (2013)CrossRefADSGoogle Scholar
  31. 31.
    Y. Ling, C. Lifshitz, Chem. Phys. Lett. 257, 587 (1996)CrossRefADSGoogle Scholar
  32. 32.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, J. Phys.: Conf. Ser. 490, 012159 (2014)ADSGoogle Scholar
  33. 33.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Heidelberg, 1995)Google Scholar
  34. 34.
    J.-P. Connerade, A.V. Solov’yov, Phys. Rev. A 66, 013207 (2002)CrossRefADSGoogle Scholar
  35. 35.
    A.V. Solov’yov, Int. J. Mod. Phys. B 19, 4143 (2005)CrossRefADSGoogle Scholar
  36. 36.
    A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 253 (2012)CrossRefADSGoogle Scholar
  37. 37.
    J. Lindhard, K. Dan. Vidensk. Selsk. Mat-fys. Medd. 28, 8 (1954)MathSciNetGoogle Scholar
  38. 38.
    S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003)CrossRefADSGoogle Scholar
  39. 39.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)CrossRefADSGoogle Scholar
  40. 40.
    L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, J. Phys. B 30, 5939 (1997)CrossRefADSGoogle Scholar
  41. 41.
    L.G. Gerchikov, A.N. Ipatov, R.G. Polozkov, A.V. Solov’yov, Phys. Rev. A 62, 043201 (2000)CrossRefADSGoogle Scholar
  42. 42.
    L.G. Gerchikov, A.V. Solov’yov, J.-P. Connerade, W. Greiner, J. Phys. B 30, 4133 (1997)CrossRefADSGoogle Scholar
  43. 43.
    P. Bolognesi, A. Ruocco, L. Avaldi, A.V. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 66, 254 (2012)CrossRefADSGoogle Scholar
  44. 44.
    D. Östling, P. Apell, A. Rosen, Europhys. Lett. 21, 539 (1993)CrossRefADSGoogle Scholar
  45. 45.
    S. Lo, A.V. Korol, A.V. Solov’yov, J. Phys. B 40, 3973 (2007)CrossRefADSGoogle Scholar
  46. 46.
    A.V. Korol, A.V. Solov’yov, Phys. Rev. Lett. 98, 179601 (2007)CrossRefADSGoogle Scholar
  47. 47.
    S.W.J. Scully et al., Phys. Rev. Lett. 94, 065503 (2005)CrossRefADSGoogle Scholar
  48. 48.
    E. Scifoni, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 81, 021903 (2010)CrossRefADSGoogle Scholar
  49. 49.
    P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)CrossRefADSGoogle Scholar
  50. 50.
    P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)CrossRefADSGoogle Scholar
  51. 51.
    P. de Vera, E. Surdutovich, I. Abril, R. Garcia-Molina, A.V. Solov’yov, Eur. Phys. J. D 68, 96 (2014)CrossRefADSGoogle Scholar
  52. 52.
  53. 53.
    S. Guatelli, A. Mantero, B. Mascialino, P. Nieminen, M.G. Pia, IEEE Trans. Nucl. Sci. 54, 585 (2007)CrossRefADSGoogle Scholar
  54. 54.
    S. Chauvie et al., in Proceedings of IEEE-NSS (Rome, Italy, 2004)Google Scholar
  55. 55.
    S. Incerti et al., Med. Phys. 37, 4692 (2010)CrossRefGoogle Scholar
  56. 56.
    R. Kuzuo, M. Terauchi, M. Tanaba, Y. Saito, H. Shinohara, Jpn J. Appl. Phys. 30, L1817 (1991)CrossRefADSGoogle Scholar
  57. 57.
    H. Deutsch, K. Becker, J. Pittner, V. Bonacic-Koutecky, S. Matt, T.D. Märk, J. Phys. B 29, 5175 (1996)CrossRefADSGoogle Scholar
  58. 58.
    M.E. Rudd, Y.-K. Kim, D.H. Madison, T.J. Gay, Rev. Mod. Phys. 64, 441 (1992)CrossRefADSGoogle Scholar
  59. 59.
    M.E. Rudd, Y.-K. Kim, T. Märk, J. Schou, N. Stolterfoht, L.H. Toburen, Secondary Electron Spectra from Charged Particle Interactions (International Commission on Radiation Units and Measurements, Bethesda, MD, 1996) (ICRU 55)Google Scholar
  60. 60.
    E. Surdutovich, O.I. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2007)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexey Verkhovtsev
    • 1
    • 2
    Email author
  • Sally McKinnon
    • 3
  • Pablo de Vera
    • 4
    • 5
  • Eugene Surdutovich
    • 6
  • Susanna Guatelli
    • 3
    • 7
  • Andrei V. Korol
    • 1
    • 8
  • Anatoly Rosenfeld
    • 3
    • 7
  • Andrey V. Solov’yov
    • 1
    • 2
  1. 1.MBN Research CenterFrankfurt am MainGermany
  2. 2.A.F. Ioffe Physical-Technical InstituteSt. PetersburgRussia
  3. 3.Centre for Medical Radiation Physics (CMRP), University of WollongongNSWAustralia
  4. 4.Departament de Física Aplicada, Universitat d’AlacantAlicanteSpain
  5. 5.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  6. 6.Department of PhysicsOakland UniversityRochesterUSA
  7. 7.Illawarra Health and Medical Research Institute (IHMRI), University of WollongongNSWAustralia
  8. 8.Department of PhysicsSt. Petersburg State Maritime Technical UniversitySt. PetersburgRussia

Personalised recommendations