Advertisement

Numerical simulation of dense cesium vapor emission and absorption spectra

  • Berislav HorvatićEmail author
  • Robert Beuc
  • Mladen Movre
Regular Article

Abstract

A recent ab initio calculation of Cs2 electronic potential curves and electronic transition dipole moments provided us with an input for the numerical simulation of Cs2 spectra. We investigated the red and near-infrared (600–1300 nm) absorption and emission spectrum of a dense cesium vapor for temperatures within the range 600–1500 K, using a novel time-efficient “semiquantum” approximation (SQA). Our study suggests that the SQA numerical simulation of the spectrum can be an efficient tool for the diagnostics of hot and dense dimer vapors. It also enables modelling of dense alkali vapor light sources.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    R. Beuc, M. Movre, B. Horvatić, Eur. Phys. J. D 68, 59 (2014)CrossRefADSGoogle Scholar
  2. 2.
    C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, K. Niemax, Eur. Phys. J. D 37, 37 (2006)CrossRefADSGoogle Scholar
  3. 3.
    W.C. Stwalley, M.E. Koch, Opt. Eng. 19, 191071 (1980) CrossRefGoogle Scholar
  4. 4.
    A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting (John Wiley & Sons, New York, 2002)Google Scholar
  5. 5.
    P. Flesch, Light and Light Sources: High-Intensity Discharge Lamps (Springer, Berlin-Heidelberg, 2006)Google Scholar
  6. 6.
    M. Rakić, G. Pichler, Opt. Commun. 284, 2881 (2011) CrossRefADSGoogle Scholar
  7. 7.
    A.R. Allouche, M. Aubert-Frécon, J. Chem. Phys. 136, 114302 (2012) CrossRefADSGoogle Scholar
  8. 8.
    A. Thorne, U. Litzén, S. Johansson, Spectrophysics – Principles and Applications (Springer Verlag, Berlin-New York-Tokio, 1999)Google Scholar
  9. 9.
    H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997)Google Scholar
  10. 10.
    F.G. Baksht, V.F. Lapshin, Plasma Phys. Rep. 38, 1078 (2012) CrossRefADSGoogle Scholar
  11. 11.
    V. Horvatic, S. Müller, D. Veza, C. Vadla, J. Franzke, Anal. Chem. 86, 857 (2014)CrossRefGoogle Scholar
  12. 12.
    R.P. Benedict, D.L. Drummond, L.A. Schlie, J. Chem. Phys. 66, 4600 (1977) CrossRefADSGoogle Scholar
  13. 13.
    S. Vdović, D. Sarkisyan, G. Pichler, Opt. Commun. 268, 58 (2006)CrossRefADSGoogle Scholar
  14. 14.
    R. Beuc, M. Movre, V. Horvatic, C. Vadla, O. Dulieu, M. Aymar, Phys. Rev. A 75, 032512 (2007) CrossRefADSGoogle Scholar
  15. 15.
    G. Pichler, S. Milošević, D. Veža, R. Beuc, J. Phys. B 16, 4619 (1983) CrossRefADSGoogle Scholar
  16. 16.
    R. Beuc, H. Skenderović, T. Ban, D. Veža, G. Pichler, W. Meyer, Eur. Phys. J. D 15, 209 (2001)CrossRefADSGoogle Scholar
  17. 17.
    D. Veža, M. Movre, G. Pichler, J. Phys. B 13, 3605 (1980) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of PhysicsZagrebCroatia

Personalised recommendations