Advertisement

Non-contact friction for ion-surface interactions

  • Ulrich D. Jentschura
  • Grzegorz Lach
Regular Article

Abstract

Non-contact friction forces are exerted on physical systems through dissipative processes, when the two systems are not in physical contact with each other, or, in quantum mechanical terms, when the overlap of their wave functions is negligible. Non-contact friction is mediated by the exchange of virtual quanta, with the additional requirement that the scattering process needs to have an inelastic component. For finite-temperature ion-surface interactions, the friction is essentially caused by Ohmic resistance due to the motion of the image charge moving in a dielectric material. A conceivable experiment is difficult because the friction force needs to be isolated from the interaction with the image charge, which significantly distorts the ion’s flight path. We propose an experimental setup which is designed to minimize the influence of the image charge interaction though a compensation mechanism, and evaluate the energy loss due to non-contact friction for helium ions (He+) interacting with gold, vanadium, titanium and graphite surfaces. Interactions with the infinite series of mirror charges in the plates are summed in terms of the logarithmic derivatives of the Gamma function, and of the Hurwitz zeta function.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    M.S. Tomassone, A. Widom, Phys. Rev. B 56, 4938 (1997)CrossRefADSGoogle Scholar
  2. 2.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 1 (Springer, New York, 1989)Google Scholar
  3. 3.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 2 (Springer, New York, 1989)Google Scholar
  4. 4.
    S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 3 (Springer, New York, 1989)Google Scholar
  5. 5.
    C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 2nd edn. (Springer, New York, 2000)Google Scholar
  6. 6.
    C.W. Gardiner, Quantum Noise (Springer, New York, 1991)Google Scholar
  7. 7.
    I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Zh. Éksp. Teor. Fiz. 37, 229 (1959) [Sov. Phys. J. Exp. Theor. Phys. 10, 161 (1960)]Google Scholar
  8. 8.
    I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Sov. Phys. Usp. 73, 153 (1961)CrossRefADSGoogle Scholar
  9. 9.
    A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 65, 115419 (2002)CrossRefADSGoogle Scholar
  10. 10.
    P.W. Milonni, The Quantum Vacuum (Academic Press, San Diego, 1994)Google Scholar
  11. 11.
    L.P. Pitaevskii, E.M. Lifshitz, Statistical Physics (Part 2), Vol. 9 of the Course on Theoretical Physics (Pergamon Press, Oxford, 1958)Google Scholar
  12. 12.
  13. 13.
    U. D. Jentschura et al., in preparation (2015)Google Scholar
  14. 14.
    M. Antezza, L.P. Pitaevskii, S. Stringari, V.B. Svetovoy, Phys. Rev. A 77, 022901 (2008)CrossRefADSGoogle Scholar
  15. 15.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)CrossRefADSGoogle Scholar
  16. 16.
    U.M.B. Marconi, A. Puglisi, L. Rondoni, A. Vulpiani, Phys. Rep. 461, 111 (2008)CrossRefADSGoogle Scholar
  17. 17.
    G. Łach, M. DeKieviet, U.D. Jentschura, Phys. Rev. A 81, 052507 (2010)CrossRefADSGoogle Scholar
  18. 18.
    A. Deinega, S. John, Opt. Lett. 37, 112 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Z.C. Yan, J.F. Babb, A. Dalgarno, G.W.F. Drake, Phys. Rev. A 54, 2824 (1996)CrossRefADSGoogle Scholar
  20. 20.
    M. Zahn, Am. J. Phys. 44, 1132 (1976)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    C.A. Lütken, F. Ravndal, Phys. Rev. A 31, 2082 (1985)CrossRefADSGoogle Scholar
  22. 22.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, 1st edn. (J. Wiley & Sons, New York, 1978), Vol. 2Google Scholar
  23. 23.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsMissouri University of Science and TechnologyRollaUSA
  2. 2.International Institute of Molecular and Cell BiologyWarsawPoland
  3. 3.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations