Advertisement

Electron-induced ionization and dissociative ionization of iron pentacarbonyl molecules

  • Michal Lacko
  • Peter PappEmail author
  • Karol Wnorowski
  • Štefan Matejčík
Regular Article
Part of the following topical collections:
  1. Topical Issue: Elementary Processes with Atoms and Molecules in Isolated and Aggregated States. Guest editors: Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis, Kurt H. Becker

Abstract

Electron ionization (EI) and dissociative ionization (DI) of Iron pentacarbonyl molecule (Fe(CO)5) was studied using a crossed molecular and electron beam mass spectrometry technique. Positive ions FeO(CO)+, FeC(CO)2+ and CO+ of Fe(CO)5 were detected for the first time. We have determined the experimental appearance energies of positive ions, the thresholds for dissociative reactions, the experimental bond dissociation energies for (CO) n Fe+-CO bond breaks (for n = 4,..., 0) and their average value for Fe-C bond energy 1.25 eV in Fe(CO) 5 + . We have performed extensive density functional theory (DFT) studies of the ground states of neutral molecule and fragments 1A′1 Fe(CO)5, 3B1 Fe(CO)4, 3A1 Fe(CO)3, 3g Fe(CO)2, 3 ∑FeCO as well as positive ions 2A1 Fe(CO) 5 + , 4A1 Fe(CO) 4 + , 4A1 Fe(CO) 3 + , 4 g Fe(CO) 2 + and 4∑ FeCO+. The structures and energies of the states have beendetermined and the calculated bond dissociation energies (BDEs) were compared with present experiments as well as with previous works.

Graphical abstract

Keywords

Bond Dissociation Energy Dissociative Ionization Appearance Energy Incident Electron Energy Dissociative Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.G. Christophorou, J.K. Olthoff, Appl. Surf. Sci. 192, 309 (2002)CrossRefADSGoogle Scholar
  2. 2.
    C.R. Arumainayagam, H.L. Lee, R.B. Nelson, D.R. Haines, R.P. Gunawardane, Surf. Sci. Rep. 65, 1 (2010)CrossRefADSGoogle Scholar
  3. 3.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vacuum Sci. Technol. B 26, 1197 (2008)CrossRefADSGoogle Scholar
  4. 4.
    J.D. Wunk, S.G. Rosenberg, J.M. Gorham, W.F. van Dorp, C.W. Hagen, D.H. Feairbrother, Surf. Sci. Rep. 607, 251 (2011)Google Scholar
  5. 5.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingolfsson, Angew. Chem. Int. Ed. 50, 9475 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)CrossRefADSGoogle Scholar
  7. 7.
    P. Papp, S. Engmann, M. Kučera, M. Stano, Š. Matejčík, O. Ingólfsson, Int. J. Mass Spectrom. 356, 24 (2013)CrossRefADSGoogle Scholar
  8. 8.
    J. Orszagh, M. Danko, A. Ribar, Š. Matejıč´k, Nucl. Instrum. Meth. B 279, 76 (2012)CrossRefADSGoogle Scholar
  9. 9.
    M. Danko, J. Orszagh, M. Ďurian, J. Kočíšek, M. Daxner, S. Zöttl, J.B. Maljković, J. Fedor, P. Scheier, S. Denifl, Š. Matejčík, J. Phys B 46, 045203 (2013)CrossRefADSGoogle Scholar
  10. 10.
    R.E. Winters, R.W. Kiser, Inorg. Chem. 3, 4 (1964)CrossRefGoogle Scholar
  11. 11.
    R.E. Winters, J.H. Collins, J. Phys. Chem. 70, 2057 (1966)CrossRefGoogle Scholar
  12. 12.
    R.E. Winters, R.W. Kiser, J. Chem. Phys. 44, 1964 (1966)CrossRefADSGoogle Scholar
  13. 13.
    A. Foffani, S. Pignataro, B. Cantone, F. Grasso, Z. Phys. Chem. (Frankfurt) 45, 78 (1965)CrossRefGoogle Scholar
  14. 14.
    D.R. Bidinosti, N.S. McIntyre, Can. J. Chem. 45, 641 (1967)CrossRefGoogle Scholar
  15. 15.
    G.A. Junk, H.J. Svec, Z. Naturforsch. B 23, 1 (1968)CrossRefGoogle Scholar
  16. 16.
    P.J. Clements, F.R. Sale, Metal. Trans. B 7, 171 (1976)CrossRefGoogle Scholar
  17. 17.
    B.R. Conard, R. Sridhar, Can. J. Chem. 56, 2 (1978)CrossRefGoogle Scholar
  18. 18.
    R.N. Compton, J.A.D. Stockdale, Int. J. Mass Spectrom. Ion Phys. 22, 47 (1976)CrossRefGoogle Scholar
  19. 19.
    L.S. Sunderlin, D. Wang, R.R. Squires, J. Am. Chem. Soc. 114, 2788 (1992)CrossRefGoogle Scholar
  20. 20.
    M. Stano, Š. Matejčík, J.D. Skalny, T.D. Märk, J. Phys. B 36, 261 (2003)CrossRefADSGoogle Scholar
  21. 21.
    S.G. Lias, Ion energetics data, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. http://webbook.nist.gov/chemistry/
  22. 22.
    G.H. Wannier, Phys. Rev. 90, 817 (1953)CrossRefADSzbMATHGoogle Scholar
  23. 23.
    G. 03, R.C. 02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)Google Scholar
  24. 24.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)CrossRefADSGoogle Scholar
  26. 26.
    M. Diedenhofen, T. Wagener, G. Frenking, The accuracy of quantum chemical methods for the calculation of transition metal compounds, in: Computational Organometallic Chemistry, edited by T.R. Cundari (Marcel Decker, Inc., New York, 2001), pp. 69–121Google Scholar
  27. 27.
    L.F. Pasteka, T. Rajsky, M. Urban, J. Phys. Chem. A 117, 4472 (2013)CrossRefGoogle Scholar
  28. 28.
    D. Rappoport, F. Furche, J. Chem. Phys. 133, 134105 (2010)CrossRefADSGoogle Scholar
  29. 29.
    O. González-Blanco, V. Branchadell, J. Chem. Phys. 110, 778 (1999)CrossRefADSGoogle Scholar
  30. 30.
    A. Ricca, C.W. Bauschlicher Jr., J. Phys. Chem.-Us 98, 12899 (1994)CrossRefGoogle Scholar
  31. 31.
    D. Braga, F. Grepioni, A.G. Orpen, Organometallics 12, 1481 (1993)CrossRefGoogle Scholar
  32. 32.
    B. Beagley, D.G. Schmidling, J. Mol. Struct. 22, 466 (1974)CrossRefADSGoogle Scholar
  33. 33.
    O. Rubner, V. Engel, M.R. Hachey, C. Daniel, Chem. Phys. Lett. 302, 489 (1999)CrossRefADSGoogle Scholar
  34. 34.
    S. Pignataro, A. Foffani, F. Grasso, B. Cantone, Z. Phys. Chem. 47, 106 (1965)CrossRefGoogle Scholar
  35. 35.
    K.E. Lewis, D.M. Golden, G.P. Smith, J. Am. Chem. Soc. 106, 3905 (1984)CrossRefGoogle Scholar
  36. 36.
    M. Erdmann, O. Rubner, Z. Shen, V. Engel, Chem. Phys. Lett. 341, 338 (2001)CrossRefADSGoogle Scholar
  37. 37.
    P.C. Engelking, W.C. Lineberger, J. Am. Chem. Soc. 101, 5569 (1979)CrossRefGoogle Scholar
  38. 38.
    E.E. Siefert, R.J. Angelici, Organometallic Chem. 8, 374 (1967)CrossRefGoogle Scholar
  39. 39.
    S. Pignataro, F.P. Losing, J. Organometallic Chem. 11, 571 (1968)CrossRefGoogle Scholar
  40. 40.
    B.K. Venkataraman, G. Bandukwalla, Z. Zhang, M.J. Vernon, Chem. Phys. 90, 5510 (1989)ADSGoogle Scholar
  41. 41.
    L.A. Barnes, M. Rosi, C.W. Bauschlicher, J. Chem. Phys. 94, 2031 (1991)CrossRefADSGoogle Scholar
  42. 42.
    T. Ziegler, V. Tschinke, C. Ursenbach, J. Am. Chem. Soc. 109, 4825 (1987)CrossRefGoogle Scholar
  43. 43.
    P.W. Vilalta, D.G. Leopold, J. Chem. Phys. 98, 7730 (1993)CrossRefADSGoogle Scholar
  44. 44.
    K. Tanaka, K. Sakaguchi, T. Tanaka, J. Chem. Phys. 106, 2118 (1997)CrossRefADSGoogle Scholar
  45. 45.
    K. Tanaka, M. Shirasaka, T. Tanaka, J. Chem. Phys. 106, 6820 (1997)CrossRefADSGoogle Scholar
  46. 46.
    R.H. Schultz, K.C. Crellin, P.B. Armentrout, J. Am. Chem. Soc. 113, 8590 (1991)CrossRefGoogle Scholar
  47. 47.
    K. Norwood, A. Ali, G.D. Flesch, C.Y. Ng, J. Am. Chem. Soc. 112, 7502 (1990)CrossRefGoogle Scholar
  48. 48.
    G. Distefano, J. Res. NBS A 74, 7 (1970)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michal Lacko
    • 1
  • Peter Papp
    • 1
    Email author
  • Karol Wnorowski
    • 2
  • Štefan Matejčík
    • 1
  1. 1.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  2. 2.Department of ChemistrySiedlce UniversitySiedlcePoland

Personalised recommendations