Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments

  • Shandor Sh. DemeshEmail author
  • Eugene Yu. Remeta
Regular Article
Part of the following topical collections:
  1. Topical Issue: Elementary Processes with Atoms and Molecules in Isolated and Aggregated States


Theoretical analysis of appearance energies for SF k + (k = 0−n) ion fragments of SF6 molecule as well as F+ and F 2 + ions at electron-impact dissociative ionization of SF n (n = 1−6) molecules is presented. Theoretical methods of GAMESS software package were used to calculate the total energies of neutral and charged molecular and atomic fragments. The dissociative ionization process is concluded to occur via repulsive highly-excited electronic states of the SF6 molecule and its fragments, due to which the observed appearance energies exceed the theoretical values. The electron binding energies on the molecular orbitals in the SF6 molecule are compared with the ion fragment appearance energies.

Graphical abstract


Ionization Potential Excited Electronic State Dissociative Ionization Appearance Energy GAMESS Software Package 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data. 29, 267 (2002)CrossRefADSGoogle Scholar
  2. 2.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  3. 3.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    R.H. Hertwig, W. Koch, Chem. Phys. Lett. 268, 345 (1997)CrossRefADSGoogle Scholar
  5. 5.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefADSGoogle Scholar
  6. 6.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefADSGoogle Scholar
  7. 7.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)CrossRefADSGoogle Scholar
  8. 8.
    T.H. Dunning Jr., P.J. Hay, in Methods of Electronic Structure Theory, edited by H.F. Schaefer, 3rd edn. (Plenum Press, New York, 1977)Google Scholar
  9. 9.
    T. Helgaker, Chem. Phys. Lett. 182, 503 (1991)CrossRefADSGoogle Scholar
  10. 10.
    A.A. Radtsig, B.M. Smirnov, in Reference Data on Atoms, Molecules, and Ions (Springer-Verlag, Berlin, 1985)Google Scholar
  11. 11.
    B. de B. Darwent, Bond Dissociation Energies in Simple Molecules, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 31. (Washington, 1970)Google Scholar
  12. 12.
    K.K. Irikura, J. Phys. Chem. Ref. Data. 36, 389 (2007)CrossRefADSGoogle Scholar
  13. 13.
    E. Miyoshi, Y. Sakai, S. Miyoshi, J. Chem. Phys. 88, 1470 (1988)CrossRefADSGoogle Scholar
  14. 14.
    S.G. Lias, J.E. Barmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Chem. Ref. Data. Suppl. 17, 861 (1988)Google Scholar
  15. 15.
    S.G. Lias, J.F. Liebman, Ion Energetics Data, NIST Chem. WebBook., ed. by P.J. Linstrom, W.G. Mallard. NIST. Gaithersburg MD. 20899 (retrieved January 31. 2014),
  16. 16.
    V. Tarnovsky, H. Deutsch, K.I. Martus, K. Becker, J. Chem. Phys. 109, 6596 (1998)CrossRefADSGoogle Scholar
  17. 17.
    D.L. Hildenbrand, J. Phys. Chem. 77, 897 (1973)CrossRefGoogle Scholar
  18. 18.
    T. Kiang, R.C. Estler, R.N. Zare, J. Chem. Phys. 70, 5925 (1979)CrossRefADSGoogle Scholar
  19. 19.
    L.M. Babcock, G.E. Streit, J. Chem. Phys. 74, 5700 (1981)CrossRefADSGoogle Scholar
  20. 20.
    E.R. Fischer, B.L. Kickel, P.B. Armentrout, J. Chem. Phys. 97, 4859 (1992)CrossRefADSGoogle Scholar
  21. 21.
    M. Ito, M. Goto, H. Toyoda, H. Sugai, Contrib. Plasma Phys. 35, 405 (1995)CrossRefADSGoogle Scholar
  22. 22.
    W. Gombler, A. Haas, H. Willner, Z. Anorg. Allg. Chem. 469, 135 (1980)CrossRefGoogle Scholar
  23. 23.
    A.N. Zavilopulo, O.B. Shpenik, A.V. Snegursky, F.F. Chipev, V.S. Vukstich, Tech. Phys. Lett. 31, 785 (2005)CrossRefGoogle Scholar
  24. 24.
    T. Stanski, B. Adamczyk, Int. J. Mass Spectrom. Ion Phys. 46, 31 (1983)CrossRefADSGoogle Scholar
  25. 25.
    D. Margreiter, G. Walder, H. Deutsch, H.U. Poll, C. Winkler, K. Stephan, T.D. Märk, Int. J. Mass Spectrom. Ion Process. 100, 143 (1990)CrossRefADSGoogle Scholar
  26. 26.
    R.E. Fox, R.K. Curran, J. Chem. Phys. 34, 1595 (1961)CrossRefADSGoogle Scholar
  27. 27.
    K. Mitsuke, S. Suzuki, T. Imamura, I. Koyano, J. Chem. Phys. 93, 8717 (1990)CrossRefADSGoogle Scholar
  28. 28.
    J.A. Stone, W. Wytenberg, J. Int. J. Mass Spectrom. Ion Process. 94, 269 (1989)CrossRefADSGoogle Scholar
  29. 29.
    M. Tichy, G. Javahery, N.D. Twiddy, E.E. Ferguson, Int. J. Mass Spectrom. Ion Process. 79, 231 (1987)CrossRefADSGoogle Scholar
  30. 30.
    R.J. Shul, B.L. Upschulte, R. Passarella, R.G. Keesee, A.W. Castleman, J. Phys. Chem. 91, 2556 (1987)CrossRefGoogle Scholar
  31. 31.
    M. Sasanuma, E. Ishiguro, T. Hayaishi, H. Masuko, Y. Morioka, T. Nakajima, M. Nakamura, J. Phys. B. 12, 4057 (1979)CrossRefADSGoogle Scholar
  32. 32.
    B.P. Pullen, J.A.D. Stockdale, Int. J. Mass Spectrom. Ion Phys. 19, 35 (1976)CrossRefADSGoogle Scholar
  33. 33.
    I.G. Simm, C.J. Danby, J.H.D. Eland, P.I.J. Mansell, J. Chem. Soc. 426 (1975)Google Scholar
  34. 34.
    J. Delwiche, Bull. Cl. Sci. Acad. Roy. Belg. 55, 215 (1969)Google Scholar
  35. 35.
    V.H. Dibeler, J.A. Walker, J. Chem. Phys. 44, 4405 (1966)CrossRefADSGoogle Scholar
  36. 36.
    V.H. Dibeler, F.L. Mohler, J. Res. Nat. Bur. Std. 40, 25 (1948)CrossRefGoogle Scholar
  37. 37.
    M.E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, NIST Chem. WebBook, ed. by P.J. Linstrom, W.G. Mallard, NIST, Gaithersburg MD, 20899 (retrieved April 14, 2014),
  38. 38.
    R.J. Glinski, Chem. Phys. Lett. 129, 342 (1986)CrossRefADSGoogle Scholar
  39. 39.
    R.J. Glinski, E.A. Mishalanie, J.W. Birks, J. Photochem. 37, 217 (1987)CrossRefGoogle Scholar
  40. 40.
    R.J. Glinski, C.D. Taylor, Chem. Phys. Lett. 155, 511 (1989)CrossRefADSGoogle Scholar
  41. 41.
    R.J. Glinski, C.D. Taylor, F.W. Kutzler, J. Phys. Chem. 94, 6196 (1990)CrossRefGoogle Scholar
  42. 42.
    Q. Li, J. Shu, Q. Zhang, S. Yu, L. Zhang, C. Chen, X. Ma, J. Phys. Chem. 102, 7233 (1998)CrossRefGoogle Scholar
  43. 43.
    Q. Li, Q. Zhang, J. Shu, S. Yu, Q. Song, C. Chen, X. Ma, Chem. Phys. Lett. 305, 79 (1999)CrossRefADSGoogle Scholar
  44. 44.
    R.D. III Johnson, J.W. Hudgens, J. Phys. Chem. 94, 3273 (1990)CrossRefGoogle Scholar
  45. 45.
    T.L. Porter, J. Chem. Phys. 48, 2071 (1968)CrossRefADSGoogle Scholar
  46. 46.
    A.B. Cornford, D.C. Frost, C.A. McDowell, J.L. Ragle, I.A. Stenhouse, J. Chem. Phys. 54, 2651 (1971)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Electron PhysicsNational Academy of Sciences of UkraineUzhgorodUkraine

Personalised recommendations