Numerical study of the dispersion characteristics of a semi-circularly corrugated slow wave structure

  • Md. Ghulam Saber
  • Rakibul Hasan Sagor
  • Md. Ruhul Amin
Regular Article

Abstract

The dispersion characteristics of the axisymmetric transverse magnetic (TM) modes of a semi-circularly corrugated periodic metallic slow wave structure (SCCSWS) have been analysed numerically by approximating the axial profile of the SWS using Fourier series. The theoretical results and some of their representative experimental counterpart revealed that, instead of using complex boundary conditions, the Fourier approximation of the axial profile can be used in deriving the dispersion relation using linear Rayleigh-Fourier (R-F) theory. An analytical equation has been derived in order to determine the Fourier constants of the approximated axial profile. Numerical technique has also been employed to calculate the Fourier constants. The dispersion relation for the SCCSWS is analysed for the cold structure which is characterized by the real value of frequency and wavenumber. The dispersion characteristics of the fundamental as well as higher order TM modes have been calculated using Fourier constants obtained by both analytical and numerical techniques. The SCCSWS analysed in this paper can be implemented in real experiments for the generation of high-power microwaves.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    R.G. Hutter, S.W. Harrison, Beam and Wave Electronics in Microwave Tubes, 1st ed. (D. Van Nostrand, New York, 1960)Google Scholar
  2. 2.
    J.E. Rowe, Nonlinear Electron-wave Interaction Phenomena (Academic Press, 1965)Google Scholar
  3. 3.
    C. Elachi, Proc. IEEE 64, 1666 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    J. Benford et al., High Power Microwaves (CRC Press, 2007)Google Scholar
  5. 5.
    M. Amin, K. Ogura, Microw. Antennas Propag. IET 1, 575 (2007)CrossRefGoogle Scholar
  6. 6.
    M.R. Amin, K. Ogura, IEEE Trans. Plasma Sci. 41, 2257 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Ogura et al., IEEE Trans. Plasma Sci. 41, 2729 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    N. Ginzburg et al., Phys. Rev. E 60, 3297 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    S.D. Korovin et al., IEEE Trans. Plasma Sci. 28, 485 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    G. Burt et al., Phys. Rev. E 70, 046402 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Kehs et al., IEEE Trans. Plasma Sci. 13, 559 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Swegle et al., Phys. Fluids 28, 2882 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    K. Minami et al., IEEE Trans. Plasma Sci. 30, 1134 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    F.D. Kantrowitz, E.A. Adler, Plasma Sci. IEEE Trans. 37, 2619 (1990)CrossRefGoogle Scholar
  15. 15.
    J.J. Barroso et al., IEEE Trans. Plasma Sci. 31, 752 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    T. Watanabe et al., Phys. Rev. E 69, 056606 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    H. Yamazaki et al., J. Plasma Fusion Res. Ser. 6, 719 (2004)Google Scholar
  18. 18.
    M.R. Amin et al., IEEE Trans. Plasma Sci. 42, 1495 (2014)CrossRefMathSciNetGoogle Scholar
  19. 19.
    K. Ogura et al., Plasma Fusion Res. 9, 3406022 (2014)Google Scholar
  20. 20.
    M.R. Amin, IET Microw. Antennas Propag. 7, 105 (2013)CrossRefGoogle Scholar
  21. 21.
    M.R. Amin et al., J. Phys. Soc. Jpn 64, 4473 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Md. Ghulam Saber
    • 1
  • Rakibul Hasan Sagor
    • 1
  • Md. Ruhul Amin
    • 1
  1. 1.Department of Electrical and Electronic EngineeringIslamic University of Technology (IUT), Board BazarGazipurBangladesh

Personalised recommendations