Influence of convection on the energy characteristics of XeCl excilamps

  • Eduard A. SosninEmail author
  • Aleksei A. Pikulev
  • Victor A. Panarin
  • Victor S. Skakun
  • Victor F. Tarasenko
Regular Article


In the work, we studied the influence of convection on the energy characteristics of coaxial XeCl excilamps driven by a dielectric barrier discharge (DBD). For the study, a special bulb with axially offset outer and inner tubes was manufactured and a gas convection model was developed. It is shown that convection of the mixture can provide an increase of 10–30% in excilamp radiation intensity compared to excilamps with no convection. The presence of convection of the working mixture increases the excilamp lifetime.


Plasma Physics 


  1. 1.
    S.V. Avtaeva, O.S. Zhdanova, A.A. Pikulev, E.A. Sosnin, V.F. Tarasenko, New Directions in Scientific Research and Applications of Excilamps (STT Publising, Tomsk, 2013) Google Scholar
  2. 2.
    U. Kogelschatz, J. Opt. Technol. 79, 484 (2012) CrossRefGoogle Scholar
  3. 3.
    T. Oppenländer, in CRC Handbook of Organic Photochemistry and Photobiology, edited by A.G. Griesbeck, M. Oelgemöller, F. Ghetti (CRC Press, Boca Raton, 2012), p. 21 Google Scholar
  4. 4.
    E.A. Sosnin, V.F. Tarasenko, M.I. Lomaev, UV and VUV excilamps (LAP LAMBERT Academic Publishing, Saarbrücken, 2012) Google Scholar
  5. 5.
    S.M. Avdeev, E.A. Sosnin, V.F. Tarasenko, J. Opt. Technol. 77, 42 (2010) CrossRefGoogle Scholar
  6. 6.
    M.V. Erofeev, M.I. Lomaev, V.F. Tarasenko, V.S. Skakun, E.A. Sosnin, D.V. Shitz, T. Mercey, L. Meilhac, Patent WO 2006000697, priority date 01.05.2006 Google Scholar
  7. 7.
    K. Köllner, M.B. Wimmershoff, C. Hintz, M. Landhalter, U. Hohenleutner, Br. J. Dermatol. 152, 750 (2005) CrossRefGoogle Scholar
  8. 8.
    L. Mavilia, M. Mori, R. Rossi, P. Campolmi, P. Guerra, T. Lotti, Giornale Italiano di Dermatologia e Venereologia 143, 329 (2008) Google Scholar
  9. 9.
    S.V. Avtaeva, E.A. Sosnin, B. Saghi, V.A. Panarin, B. Rahmani, Plasma Phys. Rep. 39, 768 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    S.V. Avtaeva, in Horizons in World Physics, edited by A. Reimer (Nova Publishers, New York, 2012), p. 1 Google Scholar
  11. 11.
    S.V. Avtaeva, B. Saghi, B. Rahmani, IEEE Trans. Plasma Sci. 39, 1814 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    A. Belasri, Z. Harrache, Plasma Chem. Plasma Process. 31, 787 (2011) CrossRefGoogle Scholar
  13. 13.
    V. Pipa, R. Bussiahn, Contrib. Plasma Phys. 51, 850 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    H. Piquet, S. Bhosle, R. Diez, M. Cousineau, M. Djibrillah, D. Le Thanh, A.N. Dagang, G. Zissis, Quantum Electron. 42, 157 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    G.K. Batchelor, An Introduction to Fluid Dynamics (SRC Regular and Chaotic Dynamics, Moscow-Izhevsk, 2004) Google Scholar
  16. 16.
    L.D. Landau, E.M. Lifshitz, in Fluid Mechanics, 2nd edn. (Course of Theoretical Physics) (Butterworth-Heinemann, 1987), Vol. 6 Google Scholar
  17. 17.
    M.V. Erofeev, E.A. Sosnin, V.F. Tarasenko, E.B. Chernof, Russ. Phys. J. 42, 68 (1999) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eduard A. Sosnin
    • 1
    • 2
    Email author
  • Aleksei A. Pikulev
    • 3
  • Victor A. Panarin
    • 1
  • Victor S. Skakun
    • 1
  • Victor F. Tarasenko
    • 1
  1. 1.Institute of High Current Electronics SB RASTomskRussia
  2. 2.Tomsk State UniversityTomskRussia
  3. 3.All-Russia Scientific Research Institute of Experimental Physics, Russian Federal Nuclear CentreSarovRussia

Personalised recommendations