Advertisement

Overlapping laser profiles used to mitigate the negative effects of beam uncertainties in direct-drive LMJ configurations

  • Mauro TemporalEmail author
  • Benoit Canaud
  • Warren J. Garbett
  • Franck Philippe
  • Rafael Ramis
Regular Article

Abstract

A direct-drive shock ignition scheme in the context of the Laser MegaJoule facility has been considered. The irradiation uniformity provided by two laser beam configurations using a total of 10 or 20 quads to drive the first compression phase has been analyzed. Firstly, a numerical method is used to optimize the laser intensity profiles in the context of the illumination approximation model; then these profiles are used to calculate the irradiation non-uniformity of a spherical target of radius r 0 = 1000 μm assuming the beam uncertainties: power imbalance 5%, pointing error 50 μm and target positioning 20 μm. These uncertainties deteriorate the quality of the irradiation increasing considerably the irradiation non-uniformity; moreover, it is found that the pointing error provides the major contribution to the degradation of the irradiation. A strategy to mitigate the negative effect induced by the beam uncertainties is proposed. It consists in using a composite profile in each beam: a first large and flat intensity profile provides a background that reduces pointing error and target positioning effects, whilst a second overlapping profile optimizes the illumination irradiation. It is found that the introduction of the flat background with an intensity of 55% with respect to the maximum intensity reduces by about 40% the non-uniformity of the irradiation due to beam uncertainties.

Keywords

Plasma Physics 

References

  1. 1.
    J. Lindl, Phys. Plasmas 2, 3933 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and high Gain Using Indirect Drive (Springer-Verlag, New York, 1998)Google Scholar
  3. 3.
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford University Press, Oxford, 2004)Google Scholar
  4. 4.
    J.H. Nuckolls, L. Wood, A. Thiessen, G.B. Zimmermann, Nature 239, 139 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    S.E. Bodner, D.G. Colombant, J.H. Gardner, R.H. Lehmberg, S.P. Obenschain, L. Phillips, A.J. Schmitt, J.D. Sethian, R.L. McCrory, W. Seka, C.P. Verdon, J.P. Knauer, B.B. Afeyan, H.T. Powell, Phys. Plasmas 5, 1901 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    B. Canaud, F. Garaude, P. Ballereau, J.L. Bourgade, C. Clique, D. Dureau, M. Houry, S. Jaouen, H. Jourdren, N. Lecler, L. Masse, A. Masson, R. Quach, R. Piron, D. Riz, J. Van der Vliet, M. Temporal, J.A. Delettrez, P.W. McKenty, Plasma Phys. Control. Fusion 49, B601 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, S.W. Haan, R.L. Kauffman, O.L. Landen, L.J. Suter, Phys. Plasmas 11, 339 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    G.S. Fraley, E.J. Linnebur, R.J. Mason, R.L. Morse, Phys. Fluids 17, 474 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    N.G. Basov, S.Yu. Gus’kov, L.P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992)CrossRefGoogle Scholar
  10. 10.
    M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S. Wilks, J. Woodworth, E.M. Campbell, M.D. Perry, R.J. Mason, Phys. Plasmas 1, 1626 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    H. Shiraga, H. Nagatomo, W. Theobald, A.A. Solodov, M. Tabak, Nucl. Fusion 54, 054005 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    H. Azechi, K. Mima, S. Shiraga, S. Fujioka, H. Nagatomo, T. Johzaki, T. Jitsuno, M. Key, R. Kodama, M. Koga, K. Kondo, J. Kawanaka, N. Miyanaga, M. Murakami, K. Nagai, M. Nakai, H. Nakamura, T. Nakamura, T. Nakazato, Y. Nakao, K. Nishihara, H. Nishimura, T. Norimatsu, P. Norreys, T. Ozaki, J. Pasley, H. Sakagami, Y. Sakawa, N. Sarukura, K. Shigemori, T. Shimizu, A. Sunahara, T. Taguchi, K. Tanaka, K. Tsubakimoto, Y. Fujimoto, H. Homma, A. Iwamoto, Nucl. Fusion 53, 104021 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Phys. Rev. Lett. 86, 436 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    S.Yu. Gus’kov, Quantum Electron. 31, 885 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M. Temporal, J.J. Honrubia, S. Atzeni, Phys. Plasmas 9, 3098 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernandez, Nature 439, 441 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Fernandez, J.J. Honrubia, B.J. Albright, K.A. Flippo, D.C. Gautier, B.M. Hegelich, M.J. Schmitt, M. Temporal, L. Yin, Nucl. Fusion 49, 065004 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    V.T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J.L. Feugeas, Ph. Nicolai, X. Ribeyre, Nucl. Fusion 50, 045003 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.J. Honrubia, J.C. Fernández, B.M. Hegelich, M. Murakami, C.D. Enriquez, Laser Part. Beams 32, 419 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, Phys. Rev. Lett. 98, 155001 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    O. Klimo, V.T. Tikhonchuk, X. Ribeyre, G. Schurtz, C. Riconda, S. Weber, J. Limpouch, Phys. Plasmas 18, 082709 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Rose, D.F. DuBois, B. Bezzerides, Phys. Rev. Lett. 58, 2547 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    K. Estabrook, J. Harte, E. Campbell, F. Ze, D. Phillion, M. Rosen, J. Larsen, Phys. Rev. Lett. 46, 724 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    R. Yan, A. Maximov, C. Ren, F. Tsung, Phys. Rev. Lett. 103, 175002 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    H. Vu, D. DuBois, D. Russell, J. Myatt, Phys. Plasmas 17, 072701 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    O. Klimo, S. Weber, V.T. Tikhonchuk, J. Limpouch, Plasma Phys. Control. Fusion 52, 055013 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    R. Yan, A. Maximov, C. Ren, Phys. Plasmas 17, 052701 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    I.V. Igumenshchev, D.H. Edgell, V.N. Goncharov, J.A. Delettrez, A.V. Maximov, J.F. Myatt, W. Seka, A. Shvydky, S. Skupsky, C. Stoeckl, Phys. Plasmas 17, 122708 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    B. Canaud, M. Temporal, New J. Phys. 12, 043037 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    B. Canaud, S. Laffite, V. Brandon, M. Temporal, Laser Part. Beams 30, 183 (2012)CrossRefGoogle Scholar
  31. 31.
    C. Cavailler, N. Fleurot, T. Lonjaret, J.M. Di Nicola, Plasma Phys. Control. Fusion B 46, 135 (2004)CrossRefGoogle Scholar
  32. 32.
    C. Lion, J. Phys.: Conf. Ser. 244, 012003 (2010)ADSGoogle Scholar
  33. 33.
    J. Ebrardt, J.M. Chaput, J. Phys.: Conf. Ser. 244, 032017 (2010)ADSGoogle Scholar
  34. 34.
    M. Temporal, B. Canaud, W.J. Garbett, R. Ramis, Laser Part. Beams 32, 549 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M. Temporal, B. Canaud, W.J. Garbett, R. Ramis, High Power Laser Sci. Eng. 2, e37 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Skupsky, K. Lee, J. Appl. Phys. 54, 3662 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    S. Jacquemot, F. Amiranoff, S.D. Baton, J.C. Chanteloup, C. Labaune, M. Koenig, D.T. Michel, F. Perez, H.P. Schlenvoigt, B. Canaud, C. Cherfils Clérouin, G. Debras, S. Depierreux, J. Ebrardt, D. Juraszek, S. Lafitte, P. Loiseau, J.L. Miquel, F. Philippe, C. Rousseaux, N. Blanchot, C.B. Edwards, P. Norreys, S. Atzeni, A. Schiavi, J. Breil, J.L. Feugeas, L. Hallo, M. Lafon, X. Ribeyre, J.J. Santos, G. Schurtz, V. Tikhonchuk, A. Debayle, J.J. Honrubia, M. Temporal, D. Batani, J.R. Davies, F. Fiuza, R.A. Fonseca, L.O. Silva, L.A. Gizzi, P. Koester, L. Labate, J. Badziak, O. Klimo, Nucl. Fusion 51, 094025 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    M. Temporal, R. Ramis, B. Canaud, V. Brandon, S. Laffite, B.J. Le Garrec, Plasma Phys. Control. Fusion 53, 124008 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M. Temporal, B. Canaud, W.J. Garbett, R. Ramis, High Power Laser Sci. Eng. 2, e8 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Murakami, K. Nishihara, H. Azechi, J. Appl. Phys. 74, 802 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    B. Canaud, X. Fortin, N. Dague, J. Bocher, Phys. Plasmas 9, 4252 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    S. Skupsky, J.A. Marozas, R.S. Craxton, R. Betti, T.J.B. Collins, J.A. Delettrez, V.N. Goncharov, P.W. McKenty, P.B. Radha, J.P. Knauer, F.J. Marshall, D.R. Harding, J.D. Kilkenny, D.D. Meyerhofer, T.C. Sangster, R.L. McCrory, Phys. Plasmas 11, 2763 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    M. Temporal, B. Canaud, W.J. Garbett, R. Ramis, Phys. Plasmas 21, 012710 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    M. Temporal, B. Canaud, W.J. Garbett, F. Philippe, R. Ramis, Eur. Phys. J. D 67, 205 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    M. Temporal, B. Canaud, B.J. Le Garrec, Phys. Plasmas 17, 022701 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    M. Temporal, B. Canaud, Eur. Phys. J. D 65, 447 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mauro Temporal
    • 1
    Email author
  • Benoit Canaud
    • 2
  • Warren J. Garbett
    • 3
  • Franck Philippe
    • 2
  • Rafael Ramis
    • 4
  1. 1.Centre de Mathématiques et de Leurs ApplicationsENS Cachan and CNRSCachan CedexFrance
  2. 2.CEA, DIFArpajon CedexFrance
  3. 3.AWE plcAldermaston, Reading, BerkshireUK
  4. 4.ETSI AeronáuticosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations