Advertisement

Analytical potential energy functions for some interhalogen diatomic electronic states

  • Qunchao FanEmail author
  • Zhixiang Fan
  • Yanping Nie
  • Weiguo Sun
  • Yi Zhang
  • Hao Feng
Regular Article

Abstract

The studies of vibrational energies and analytical potential energy functions (APEFs) have been carried out for four interhalogen diatomic electronic states B(3 Π 0 +) and A(3 Π 1) of ClF, A′(3 Π 2u ) of Cl2, and the ground state X 1 Σ g + of Br2 by using an improved variational algebraic energy-consistent method (VAECM(4)). The full vibrational energies, the vibrational spectroscopic constants, the force constants f n , and the expansion coefficients a n of the ECM (energy-consistent method) potential are tabulated. The VAECM(4) APEF with adjustable variational parameter λ for each electronic state is determined, and is shown to be in excellent agreement with available experimental data and has no any artificial barrier in all the calculation ranges that may appear in some other analytical potentials.

Keywords

Molecular Physics and Chemical Physics 

Supplementary material

10053_2014_1108_MOESM1_ESM.pdf (270 kb)
Supplementary material, approximately 270 KB.

References

  1. 1.
    R.D. Coombe, D. Pilipovich, R.K. Horne, J. Phys. Chem. 82, 2484 (1978)CrossRefGoogle Scholar
  2. 2.
    I.S. McDermid, J. Chem. Soc. Faraday Trans. II 77, 519 (1981)CrossRefGoogle Scholar
  3. 3.
    W.A. de Jong, J. Styszynski, L. Visscher, W.C. Nieuwpoort, J. Chem. Phys. 108, 5177 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    V.A. Alekseev, D.W. Setser, J. Chem. Phys. 107, 4771 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Alekseev, D.W. Setser, J. Tellinghuisen, J. Mol. Spectrosc. 194, 61 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Alekseev, D.W. Setser, Bull. Korean Chem. Soc. 21, 9 (2000)Google Scholar
  7. 7.
    J.H. Si, T. Ishiwata, K. Obi, J. Mol. Spectrosc. 147, 334 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    M.S.N. Alkahali, R.J. Donovan, K.P. Lawley, Z.Y. Min, T. Ridley, J. Chem. Phys. 104, 1825 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Kokh, A.B. Alekseyev, R.J. Buenker, J. Chem. Phys. 120, 11549 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    K. Balasubramanian, Chem. Phys. 119, 41 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    C. Focsa, H. Li, P.F. Bernath, J. Mol. Spectrosc. 200, 104 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    S. Gerstenkorn, P. Luc, A. Raynal, J. Sinzelle, J. Phys. 48, 1685 (1987)CrossRefGoogle Scholar
  13. 13.
    S. Gerstenkorn, P. Luc, J. Phys. France 50, 1417 (1989)CrossRefGoogle Scholar
  14. 14.
    J. da Silva Gomes, R. Gargano, J.B.L. Martins, L.G.M. de Macedo, J. Phys. Chem. A 118, 5818 (2014)Google Scholar
  15. 15.
    J. Neugebauer, E.J. Baerends, M. Nooijen, J. Chem. Phys. 121, 6155 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    A.M. Teale, D.J. Tozer, J. Chem. Phys. 122, 034101 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    D. Marshall, J. Quant. Spectrosc. Radiat. Trans. 109, 2546 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    W.G. Sun, Mol. Phys. 92, 105 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    W.G. Sun, H. Feng, J. Phys. B 32, 5109 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    W.G. Sun, S.L. Hou, H. Feng, W.Y. Ren, J. Mol. Spectrosc. 215, 93 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    W.Y. Ren, W.G. Sun, S.L. Hou, H. Feng, Sci. China Ser. G 48, 385 (2005)CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, W.G. Sun, J. Fu, Q.C. Fan, J. Ma, L.T. Xiao, S.T. Jia, H. Feng, H.D. Li, J. Quant. Spectrosc. Radiat. Trans. 120, 81 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Q.C. Fan, W.G. Sun, H. Feng, Y. Zhang, Q. Wang, Eur. Phys. J. D 68, 5 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Dunham, Phys. Rev. 41, 721 (1932)ADSCrossRefGoogle Scholar
  25. 25.
    V.A. Alekseev, D.W. Setser, J. Tellinghuisen, J. Mol. Spectrosc. 195, 162 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Alekseev, Opt. Spectrosc. 95, 676 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    A.A. Vassilakis, A. Kalemos, A. Mavridis, Theor. Chem. Acc. 133, 1436 (2014)CrossRefGoogle Scholar
  28. 28.
    P.C. Tellinghuisen, B. Guo, D.K. Chakraborty, J. Tellinghuisen, J. Mol. Spectrosc. 128, 268 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    N.K. Bibinov, V.K. Davydov, A.A. Fateev, D.B. Kokh, E.V. Lugovoj, C. Ottinger, A.M. Pravilov, J. Chem. Phys. 109, 10864 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    L.G. de Macedo, W.A. de Jong, J. Chem. Phys. 128, 041101 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Johnsen, A.B. Alekseyev, G.G Balint-Kurti, M. Brouard, A. Brown, R.J. Buenker, E.K. Campbell, D.B. Kokh, J. Chem. Phys. 136, 164310 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Y.J. Jee, M.S. Park, Y.S. Kim, Y.J. Jung, K.H. Jung, Chem. Phys. Lett. 287, 701 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    G. Kerenskaya, I.U. Goldschleger, V.A. Apkarian, K.C. Janda, J. Phys. Chem. A 110, 13792 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qunchao Fan
    • 1
    Email author
  • Zhixiang Fan
    • 1
  • Yanping Nie
    • 2
  • Weiguo Sun
    • 1
    • 3
  • Yi Zhang
    • 3
  • Hao Feng
    • 1
  1. 1.Research Center for Advanced Computation, School of Physics and ChemistryXihua UniversityChengdu, SichuanP.R. China
  2. 2.School of ScienceChangchun University of Science and TechnologyChangchunP.R. China
  3. 3.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduP.R. China

Personalised recommendations