Electron capture processes in Li2+ + H collisions

  • Ling Ling YanEmail author
  • Ling Liu
  • Jian Guo Wang
  • Ratko K. Janev
  • Robert J. Buenker
Regular Article


The electron capture processes in Li2 + + H collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method in the energy ranges of 10-8–10 keV/u and 0.1–300 keV/u, respectively. The capture to singlet and triplet systems of states of Li+(1s,n l 2S + 1L) is considered separately. Total, n,S-resolved and n,l,S-resolved electron capture cross sections are calculated and compared with the results of available experimental and theoretical studies. The present calculations show that the n = 2 shell of Li+ is the main capture channel for all energies considered in both the singlet and triplet case. While for collision energies E> 5 keV/u, the cross sections for capture to the n = 2 manifold are of the same order of magnitude for both the singlet and triplet states (with the 2p capture cross section being dominant), for energies below ~5 keV/u the cross sections for capture to the n = 2 triplet manifold is significantly (more than three orders of magnitude at 0.1 keV/u) larger than that for capture to the n = 2 singlet manifold of states (with the 2s capture cross section being dominant). The capture dynamics at low collision energies is discussed in considerable detail, revealing the important role of rotational couplings in population of l> 0 capture states. The elastic scattering processes have been studied as well in the energy range of 10-8–1 keV/u. The calculated elastic scattering cross section is much larger than the electron capture cross section in both the singlet and triplet case. However, as the collision energy increases, the difference between the elastic and electron capture cross sections decreases rapidly.


Atomic and Molecular Collisions 


  1. 1.
    A. Loarte et al., Nucl. Fusion 47, S203 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    M. Apicella, G. Mazzitelli, V.P. Ridolfini, V. Lazarev, A. Alekseyev, A. Vertkov, R. Zagorski, J. Nucl. Mater. 363, 1346 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    I.E. Lyubinski, A.V. Vertkov, Fusion Eng. Des. 85, 924 (2010)CrossRefGoogle Scholar
  4. 4.
    M.B. Shah, T.V. Goffe, H.B. Gilbody, J. Phys. B 7, L233 (1978)CrossRefGoogle Scholar
  5. 5.
    M.B. Shah, H.B. Gilbody, J. Phys. B 24, 977 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    W. Seim, A. Müller, I. Wirkner-Bott, E. Salzborn, J. Phys. B 14, 3475 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    K.E. Banyard, G.W. Shirtcliffe, Phys. Rev. A 30, 604 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Ford, J.F. Reading, R.L. Becker, J. Phys. B 15, 3257 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    L.F. Errea, L. Méndez, A. Riera, M. Yáñez, J. Hanssen, C. Harel, A. Salin, J. Phys. 46, 719 (1985)CrossRefGoogle Scholar
  10. 10.
    A. Henne, H.J. Ludde, A. Toepfer, R.M. Dreizler, Phys. Lett. A 124, 508 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    A. Henne, H.J. Ludde, A. Toepfer, R.M. Dreizler, Phys. Lett. A 127, 427 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    W. Fritsch, C.-D. Lin, Phys. Lett. A 127, 425 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    L. Liu, X.Y. Li, J.G. Wang, R.K. Janev, Phys. Plasmas 21, 062513 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R.J. Buenker, R.A. Phillips, J. Mol. Struct. (Theochem) 123, 291 (1985)CrossRefGoogle Scholar
  15. 15.
    S. Krebs, R.J. Buenker, J. Chem. Phys. 103, 5613 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    R.J. Buenker, S.D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974)CrossRefGoogle Scholar
  18. 18.
    R.J. Buenker, S.D. Peyerimhoff, Theor. Chim. Acta 39, 217 (1975)CrossRefGoogle Scholar
  19. 19.
    R.J. Buenker, Int. J. Quantum Chem. 29, 435 (1986)CrossRefGoogle Scholar
  20. 20.
    Y. Ralchenko, A.E. Kramida, J. Reader, NIST ASD Team, NIST Atomic Spectra Database, version 4.0.1 (2010),
  21. 21.
    B. Herrero, I.L. Cooper, A.S. Dickinson, J. Phys. B 29, 5583 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    M.C. Bacchus-Montabonel, P. Ceyzeriat, Phys. Rev. A 58 1162 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    L.F. Errea, L. Mendez, A. Riera, J. Phys. B 15, 101 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    B. Zygelman, A. Dalgarno, Phys. Rev. A 33, 3853 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    M. Kimura, N.F. Lane, Adv. At. Mol. Phys. 26, 79 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    B.R. Johnson, J. Comput. Phys. 13, 445 (1973)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    T.G. Heil, S.E. Butler, A. Dalgarno, Phys. Rev. A 23, 1100 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    W. Fritsch, C.D. Lin, Phys. Rep. 202, 1 (1991)ADSCrossRefGoogle Scholar
  29. 29.
    C. Bottcher, J. Phys. B 4, 1140 (1971)ADSCrossRefGoogle Scholar
  30. 30.
    B.H. Bransden, M.R.C. McDowell, Charge exchange and the theory of ion-atom collisions (Clarendon press, Oxford, 1992)Google Scholar
  31. 31.
    J.H. Macek, P.S. Krstić, S.Yu. Ovchinnikov, Phys. Rev. Lett. 93, 183203 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    S.Yu. Ovchinnikov, P.S. Krstić, J.H. Macek, Phys. Rev. A 74, 042706 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    P.S. Krstić, J.H. Macek, S.Yu. Ovchinnikov, D.R. Shultz, Phys. Rev. A 70, 042711 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ling Ling Yan
    • 1
    • 2
    Email author
  • Ling Liu
    • 2
  • Jian Guo Wang
    • 2
  • Ratko K. Janev
    • 3
    • 4
  • Robert J. Buenker
    • 5
  1. 1.Department of Radiation OncologyCancer Institute (Hospital), Chinese Academy of Medical SciencesBeijingP.R. China
  2. 2.Data Center for High Energy Density Physics, Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  3. 3.Macedonian Academy of Sciences and Arts, SkopjeMacedonia
  4. 4.Institut für Energieforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Trilateral Euregio ClusterJülichGermany
  5. 5.Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universität WuppertalWuppertalGermany

Personalised recommendations