Bounds on quantum multiple-parameter estimation with Gaussian state

Regular Article

Abstract

We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We compute the corresponding quantum Fisher information matrices, and find that they can be fully expressed in terms of the mean displacement and covariance matrix of the Gaussian state. Finally, we give some examples to show the utility of our analytical results.

Keywords

Quantum Optics 

References

  1. 1.
    V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    M.G.A. Paris, Int. J. Quantum Inf. 7, 125 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, K. Banaszek, I.A. Walmsley, Nat. Photon. 4, 357 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A. Monras, M.G.A. Paris, Phys. Rev. Lett. 98, 160401 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M. Aspachs, G. Adesso, I. Fuentes, Phys. Rev. Lett. 105, 151301 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    Y.M. Zhang, X.W. Li, W. Yang, G.R. Jin, Phys. Rev. A 88, 043832 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    C.A. Perez-Delgado, M.E. Pearce, P. Kok, Phys. Rev. Lett. 109, 123601 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    P.C. Humphreys, M. Barbieri, A. Datta, I.A. Walmsley, Phys. Rev. Lett. 111, 070403 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976)Google Scholar
  10. 10.
    A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdan, 1982)Google Scholar
  11. 11.
    S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994) ADSCrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    A. Monras, F. Illuminati, Phys. Rev. A 83, 012315 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    A. Monras, F. Illuminati, Phys. Rev. A 81, 062326 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    A. Monras, arXiv:1303.3682 (2013)Google Scholar
  15. 15.
    P.J.D. Crowley, A. Datta, M. Barbieri, I.A. Walmsley, Phys. Rev. A 89, 023845 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    H.P. Yuen, M. Lax, IEEE Trans. Inf. Theory 19, 740 (1973)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    C.W. Helstrom, R.S. Kennedy, IEEE Trans. Inf. Theory 20, 16 (1974)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    M.G. Genoni, M.G.A. Paris, G. Adesso, H. Nha, P.L. Knight, M.S. Kim, Phys. Rev. A 87, 012107 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Berlin, 1994)Google Scholar
  20. 20.
    P.M. Anisimov, G.M. Raterman, A. Chiruvelli, W.N. Plick, S.D. Huver, H. Lee, J.P. Dowling, Phys. Rev. Lett. 104, 103602 (2010) ADSCrossRefGoogle Scholar
  21. 21.
    X.X. Zhang, Y.X. Yang, X.B. Wang, Phys. Rev. A 88, 013838 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    M. Jarzyna, R. Demkowicz-Dobrzanski, Phys. Rev. A 85, 011801(R) (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsXinyang Normal UniversityHenanP.R. China
  2. 2.Hearne Institute for Theoretical Physics and Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations