Advertisement

Electron-impact-induced tryptophan molecule fragmentation

  • Jelena TamulieneEmail author
  • Liudmila G. Romanova
  • Vasyl S. Vukstich
  • Alexander V. Papp
  • Alexander V. Snegursky
Regular Article
Part of the following topical collections:
  1. Topical Issue: Elementary Processes with Atoms and Molecules in Isolated and Aggregated States. Guest editors: Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis, Kurt H. Becker

Abstract

The fragmentation of a gas-phase tryptophan molecule by a low-energy (<70 eV) electron impact was studied both experimentally and theoretically. Various positively charged fragments were observed and analyzed. A special attention was paid to the energy characteristics of the ionic fragment yield. The geometrical parameters of the initial molecule rearrangement were also analyzed. The fragmentation observed was due to either a simple bond cleavage or more complex reactions involving molecular rearrangements.

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett. 402, 497 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Fuciarelli, J.D. Zimbrick, Radiation Damage in DNA: Structure/Function Relationship at Early Times (Battelle Press, Columbus, 1995)Google Scholar
  3. 3.
    P.K. Pallaghy, A.P. Melnikova, E.C. Jimenez, B.M. Olivera, R.S. Norton, Biochemistry 38, 11553 (1999) CrossRefGoogle Scholar
  4. 4.
    L.V. Hankes, R.R. Brown, J. Leklem, M. Schmaeler, J. Jesseph, J. Invest. Dermatol. 58, 85 (1972)CrossRefGoogle Scholar
  5. 5.
    J. Thomson, H. Rankin, G.W. Ashcroft, C.M. Yates, J.K. McQueen, S.W. Cummings, Psychol. Med. 12, 741 (1982)CrossRefGoogle Scholar
  6. 6.
    H. Kang, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, G. Grégoire, C. Desfrançois, J.-P. Schermann, M. Barat, J.A. Fayeton, Phys. Chem. Chem. Phys. 6, 2628 (2004)CrossRefGoogle Scholar
  7. 7.
    V.S. Vukstich, A.I. Imre, A.V. Snegursky, Tech. Phys. Lett. 15, 1071 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    V.S. Vukstich, A.I. Imre, L.G. Romanova, A.V. Snegursky, J. Phys. B 43, 185208 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    V.S. Vukstich, A.I. Imre, A.V. Snegursky, Instrum. Exp. Tech. 54, 66 (2011)CrossRefGoogle Scholar
  10. 10.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992) ADSCrossRefGoogle Scholar
  12. 12.
    J.T. Bursey, M.M. Bursey, D.G.I. Kingston, Chem. Rev. 73, 231 (1973)CrossRefGoogle Scholar
  13. 13.
    Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)Google Scholar
  14. 14.
    National Institute of Standards (NIST), Standard Reference Database: Chemistry Webbook, http://webbook.nist.gov
  15. 15.
    O.V. Kharitonova, in Methods and Technology of Production of Organic Compounds Used in Materials for Information Registration (MITHT Publishers, Moscow, 2004), Part IGoogle Scholar
  16. 16.
    A. Kraj, D.M. Desiderio, N.M. Nibbering, in Mass Spectrometry: Instrumentation, Interpretation, and Applications, edited by R. Ekman, J. Silberring, A. Westman-Brinkmalm (John Wiley & Sons, 2009) Google Scholar
  17. 17.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955) ADSCrossRefGoogle Scholar
  18. 18.
    H. Jurgen, Gross Mass Spectroscopy. A Textbook, 2nd edn. (Springer-Verlag, Berlin-Heidelberg, 2011)Google Scholar
  19. 19.
    F.O. Talbot, T. Tabarin, R. Antoine, M. Broyer, P. Dugourd, J. Chem. Phys. 122, 074310 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    O. Plekan, V. Feyer, R. Richter, M. Coreno, K.C. Prince, Mol. Phys. 106, 1143 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    J. Tamuliene, L.G. Romanova, V.S. Vukstich, A.V. Snegursky, Chem. Phys. 404, 74 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    V.S. Vukstich, L.G. Romanova, A.V. Snegursky, Tech. Phys. Lett. 38, 347 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    J. Tamuliene, L.G. Romanova, V.S. Vukstich, A.V. Snegursky, Chem. Phys. 404, 36 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    P.H. Cannington, N.S. Ham, J. Electron Spectrosc. Relat. Phenom. 32, 139 (1983)CrossRefGoogle Scholar
  25. 25.
    V. Lepere, B. Lucas, M. Barat, J.A. Fayeton, V.J. Picard, C. Jouvet, P. Carcabal, I. Nielsen, C. Dedonder-Lardeux, G. Gregoire, A. Fujii, J. Chem. Phys. 127, 134313 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    D. Dehareng, G. Dive, Int. J. Mol. Sci. 5, 301 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Q. Liu, M. Sun, ISRN Spectrosc. 2012, 973649 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    J. Hager, M. Ivanco, M.A. Smith, S.C. Wallace, Chem. Phys. 105, 397 (1986) ADSCrossRefGoogle Scholar
  29. 29.
    M.S. MacLennan, K.N. Sutherland, G. Orlova, J. Mol. Struct. (Theochem) 822, 21 (2007)CrossRefGoogle Scholar
  30. 30.
    V.S. Vukstich, L.G. Romanova, I.G. Megela, A.V. Snegursky, Tech. Phys. Let. 40, 263 (2014)CrossRefGoogle Scholar
  31. 31.
    J. Tamuliene, L.G. Romanova, V.S. Vukstich, A.V. Snegursky, Lith. J. Phys. 53, 195 (2013)CrossRefGoogle Scholar
  32. 32.
    H. El Aribi, G. Orlova, A.C. Hopkinson, K.W.M. Siu, J. Phys. Chem. A 108, 3844 (2004) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jelena Tamuliene
    • 1
    Email author
  • Liudmila G. Romanova
    • 2
  • Vasyl S. Vukstich
    • 2
  • Alexander V. Papp
    • 2
  • Alexander V. Snegursky
    • 2
  1. 1.Vilnius University, Institute of Theoretical Physics and AstronomyVilniusLithuania
  2. 2.Institute of Electron Physics, National Academy of Sciences of UkraineUzhgorodUkraine

Personalised recommendations