Advertisement

Unusual behavior of sound velocity of a Bose gas in an optical superlattice at quasi-one-dimension

  • Lei Chen
  • Zhu Chen
  • Wu Li
  • Zhidong Zhang
  • Zhaoxin LiangEmail author
Regular Article

Abstract

A Bose gas trapped in a one-dimensional optical superlattice has emerged as a novel superfluid characterized by tunable lattice topologies and tailored band structures. In this work, we focus on the propagation of sound in such a novel system and have found new features on sound velocity, which arises from the interplay between the two lattices with different periodicity and is not present in the case of a condensate in a monochromatic optical lattice. Particularly, this is the first time that the sound velocity is found to first increase and then decrease as the superlattice strength increases even at one dimension. Such unusual behavior can be analytically understood in terms of the competition between the decreasing compressibility and the increasing effective mass due to the increasing superlattice strength. This result suggests a new route to engineer the sound velocity by manipulating the superlattice’s parameters. All the calculations based on the mean-field theory are justified by checking the exponent γ of the off-diagonal one-body density matrix that is much smaller than 1. Finally, the conditions for possible experimental realization of our scenario are also discussed.

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)Google Scholar
  3. 3.
    D. Pines, P. Nozières, in The Theory of Quantum Liquids (Benjamin, New York, 1966), Vol. IGoogle Scholar
  4. 4.
    D. Pines, P. Nozières, in The Theory of Quantum Liquids (Addison-Wesley, Reading, 1990), Vol. IIGoogle Scholar
  5. 5.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems (Oxford University Press, Oxford, 2012)Google Scholar
  7. 7.
    M.R. Andrews, D.M. Kurn, H.J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 79, 553 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    M.R. Andrews, D.M. Stamper-Kurn, H.J. Miesner, D.S. Durfee, C.G. Townsend, S. Inouye, W. Ketterle, Phys. Rev. Lett. 80, 2967 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    C. Raman, M. Kohl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    X. Du, S. Wan, E. Yesilada, C. Ryu, D.J. Heinzen, Z. Liang, B. Wu, New. J. Phys. 12, 083025 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.S. Lüann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2009)CrossRefGoogle Scholar
  12. 12.
    P. Öhberg, E.L. Surkov, I. Tittonen, S. Stenholm, M. Wilkens, G.V. Shlyapnikov, Phys. Rev. A 56, R3346 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    E. Zaremba, Phys. Rev. A 57, 518 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A 58, 1563 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    S. Stringari, Phys. Rev. A 58, 2385 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    P.O. Fedichev, G.V. Shlyapnikov, Phys. Rev. A 63, 045601 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    B. Damski, Phys. Rev. A 69, 043610 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    K. Berg-Sorensen, K. Molmer, Phys. Rev. A 58, 1480 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Krämer, C. Menotti, L. Pitaevskii, S. Stringari, Eur. Phys. J. D 27, 247 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    C. Menotti, M. Krämer, A. Smerzi, L. Pitaevskii, S. Stringari, Phys. Rev. A 70, 023609 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    I. Danshita, S. Kurihara, S. Tsuchiya, Phys. Rev. A 72, 053611 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J.P. Martikainen, H.T.C. Stoof, Phys. Rev. A 69, 023608 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    M. Krämer, C. Menotti, M. Modugno, J. Low Temp. Phys. 138, 729 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    E. Taylor, E. Zaremba, Phys. Rev. A 68, 053611 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    D. Boers, C. Weiss, M. Holthaus, Europhys. Lett. 67, 887 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Z.X. Liang, X. Dong, Z.D. Zhang, B. Wu, Phys. Rev. A 78, 023622 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    W. Zwerger, J. Opt. 5, S9 (2003)ADSGoogle Scholar
  28. 28.
    Y. Hu, Z. Liang, B. Hu, Phys. Rev. A 80, 043629 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Hu, Z. Liang, B. Hu, Phys. Rev. A 81, 053621 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    J.I. Cirac, P. Zoller, Nat. Phys. 8, 264 (2012)CrossRefGoogle Scholar
  32. 32.
    I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler, P. Zoller, Nat. Phys. 4, 878 (2008)CrossRefGoogle Scholar
  34. 34.
    A.J. Daley, P.O. Fedichev, P. Zoller, Phys. Rev. A 69, 022306 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    A. Griessner, A.J. Daley, S.R. Clark, D. Jaksch, P. Zoller, Phys. Rev. Lett. 97, 220403 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    A. Griessner, A.J. Daley, S.R. Clark, D. Jaksch, P. Zoller, New J. Phys. 9, 44 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    P. Windpassinger, K. Sengstock, Rep. Prog. Phys. 76, 086401 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    S. Peil, J.V. Porto, B.L. Tolra, J.M. Obrecht, B.E. King, M. Subbotin, S.L. Rolston, W.D. Phillips, Phys. Rev. A 67, 053403(R) (2003)CrossRefGoogle Scholar
  39. 39.
    M. Weitz, G. Cennini, G. Ritt, C. Geckeler, Phys. Rev. A 70, 043414 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    G. Ritt, C. Geckeler, T. Salger, G. Cennini, M. Weitz, Phys. Rev. A 74, 063622 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    T. Salger, C. Geckeler, S. Kling, M. Weitz, Phys. Rev. Lett. 99, 190405 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    T. Salger, C. Grossert, S. Kling, M. Weitz, Phys. Rev. Lett. 107, 240401 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    A.B. Bhattacherjee, J. Phys. B 40, 143 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    S. Trotzky, P. Cheinet, S. Foelling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin, I.F. Bloch, Science 319, 295 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    M. Atala, M. Aidelsburger, J.T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, I. Bloch, Nat. Phys. 9, 795 (2013)CrossRefGoogle Scholar
  47. 47.
    S.L. Zhu, Z.D. Wang, Y.H. Chan, L.M. Duan, Phys. Rev. Lett. 110, 075303 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Z.H. Xu, L.H. Li, S. Chen, Phys. Rev. Lett. 110, 215301 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    J.I. Cirac, P. Maraner, J.K. Pachos, Phys. Rev. Lett. 105, 190403 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, I.F. Bloch, Nature 448, 1029 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    L. Wang, M. Troyer, X. Dai, Phys. Rev. Lett. 111, 026802 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    F.S. Cataliotti et al., Science 293, 843 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    D.S. Petrov, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 87, 050404 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Hu, Z. Liang, Phys. Rev. Lett. 107, 110401 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Hu, Z. Liang, Mod. Phys. Lett. B 27, 1330010 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    C. Menotti, S. Stringari, Phys. Rev. A 66, 043610 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    B. Wu, Q. Niu, Phys. Rev. A 64, 061603 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    B. Wu, Q. Niu, New J. Phys. 5, 104 (2003)ADSCrossRefGoogle Scholar
  60. 60.
    A. Smerzi, A. Trombettoni, Phys. Rev. A 68, 023613 (2003)ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    L.J. Lang, X.M. Cai, S. Chen, Phys. Rev. Lett. 108, 220401 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    L.A. Sidorenkov, M.K. Tey, R. Grimm, Y.H. Hou, L. Pitaevskii, S. Stringari, Nature 498, 78 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    L. Chen, W. Li, Z. Chen, Z. Zhang, Z. Liang, J. Low. Temp. Phys. 177, 291 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lei Chen
    • 1
  • Zhu Chen
    • 2
  • Wu Li
    • 1
  • Zhidong Zhang
    • 1
  • Zhaoxin Liang
    • 1
    Email author
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of SciencesShenyangP.R. China
  2. 2.National Key Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational MathematicsBeijingP.R. China

Personalised recommendations