Advertisement

Accurate adiabatic potential energy surface for 12A′ state of FH2 based on ab initio data extrapolated to the complete basis set limit

  • Yong-Qing Li
  • Yu-Zhi SongEmail author
  • António Joaquim de Campos Varandas
Regular Article

Abstract

An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system. It is obtained by using the aug-cc-pVTZ and aug-cc-pVQZ basis sets with extrapolation of the electron correlation energy to the complete basis set limit, plus extrapolation to the complete basis set limit of the complete-active-space self-consistent field energy. The collinear and bending barrier heights of the new global potential energy surface is 2.301 and 1.768 kcal mol-1, in very good agreement with the values of 2.222 and 1.770 kcal mol-1 from the current best potential energy surface. In particular, the new potential energy surface describes well the important van der Waals interactions which is very useful for investigating the dynamics of the title system. Thus, the new potential energy surface can both be recommended for dynamics studies of the F + H2 reaction and as building block for constructing the potential energy surfaces of larger fluorine/hydrogen containing systems. Based on the new potential energy surface, a preliminary theoretical study of the reaction F(2P) + H2 (X1 Σ g +) → FH(X 1 Σ +) + H(2S) has been carried out with the methods of quasi-classical trajectory and quantum mechanical. The results have shown that the new PES is suitable for any kind of dynamics studies.

Keywords

Atomic and Molecular Collisions 

Supplementary material

References

  1. 1.
    W. Cardoen, J. Simons, R.J. Gdanitz, Int. J. Quantum Chem. 106, 1516 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Parker, G.E. Pimentel, J. Chem. Phys. 51, 91 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    T.P. Schafer, P.E. Siska, J.M. Parson, F.P. Tully, Y.C. Wong, Y.T. Lee, J. Chem. Phys. 55, 3385 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Polanyi, K.B. Woodall, J. Chem. Phys. 57, 1574 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    R.D. Coombe, G.C. Pimentel, J. Chem. Phys. 59, 251 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    E. Wurzberg, P.L. Houston, J. Chem. Phys. 72, 4811 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    W.H. Miller, B.M.D.D. Jansen op de Haar, J. Chem. Phys. 86, 6213 (1987)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    J.Z.H. Zhang, S.I. Chu, W.H. Miller, J. Chem. Phys. 88, 6233 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    D.W. Schwenke, K. Haug, D.G. Truhlar, Y. Sun, J.Z.H. Zhang, D.J. Kouri, J. Phys. Chem. 91, 6080 (1987)CrossRefGoogle Scholar
  10. 10.
    D.W. Schwenke, K. Haug, M. Zhao, D.G. Truhlar, Y. Sun, J.Z.H. Zhang, D.J. Kouri, J. Chem. Phys. 92, 3202 (1988)CrossRefGoogle Scholar
  11. 11.
    D.E. Manolopoulos, R.E. Wyatt, Chem. Phys. Lett. 152, 23 (1988)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    D.E. Manolopoulos, M. D’Mello, R.E. Wyatt, J. Chem. Phys. 91, 6096 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    D.E. Manolopoulos, M. D’Mello, R.E. Wyatt, J. Chem. Phys. 93, 403 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    M. Qiu, Z. Ren, L. Che, D. Dai, S.A. Harich, X. Wang, X. Yang, C. Xu, D. Dai, M. Gusatafsson, R.T. Skodje, Z. Sun, D.H. Zhang, Science 311, 1440 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    L. Che, Z. Ren, X. Wang, W. Dong, D. Dai, X. Wang, D.H. Zhang, X. Yang, L. Sheng, G. Li, H.-J. Werner, F. Lique, M.H. Alexander, Science 317, 1061 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    X. Wang, W. Dong, Z.R.M. Qiu, L. Che, D. Dai, X. Wang, X. Yang, Z. Sun, B. Fu, S.-Y. Lee, X. Xu, D.H. Zhang, Proc. Natl. Acad. Sci. USA 105, 6227 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    B. Fu, X. Xu, D.H. Zhang, J. Chem. Phys. 129, 011103 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    C.F. Bender, S.V. O’Neill, P.K. Pearson, H.F. Schaefer III, Science 176, 1412 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    H.F. Schaefer III, J. Phys. Chem. 89, 5336 (1985)CrossRefGoogle Scholar
  20. 20.
    F.B. Brown, R. Steckler, D.W. Schwenke, D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 82, 188 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    R. Steckler, D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 82, 5499 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    D.W. Schwenke, R. Steckler, F.B. Brown, D.G. Truhlar, J. Chem. Phys. 84, 5706 (1986)ADSCrossRefGoogle Scholar
  23. 23.
    D.W. Schwenke, R. Steckler, F.B. Brown, D.G. Truhlar, J. Chem. Phys. 86, 2443 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    G. Lynch, R. Steckler, D.W. Schwenke, A.J.C. Varandas, D.G. Truhlar, B.C. Garrett, J. Chem. Phys. 94, 7136 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    S.L. Mielke, G.C. Lynch, D.G. Truhlar, D.W. Schwenke, Chem. Phys. Lett. 213, 10 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    A.J.C. Varandas, Adv. Chem. Phys. 74, 255 (1988)Google Scholar
  27. 27.
    A.J.C. Varandas, Chem. Phys. Lett. 194, 333 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    A.J.C. Varandas, in Reaction and Molecular Dynamics, Lecture Notes in Chemistry, edited by A. Laganá, A. Riganelli (Springer, Berlin, 2000), Vol. 75, p. 33Google Scholar
  29. 29.
    A.J.C. Varandas, in Conical Intersections: Electronic Structure, Spectroscopy and Dynamics, Advanced Series in Physical Chemistry (World Scientific Publishing, 2004), Chap. 5, p. 91Google Scholar
  30. 30.
    C.W. Bauschlicher Jr., S.P. Walch, S.R. Langhoff, P.R. Taylor, R.L. Jaffe, J. Chem. Phys. 88, 1743 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    K. Stark, H.-J. Werner, J. Chem. Phys. 104, 6515 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    C. Xu, D. Xie, D.H. Zhang, Chin. J. Chem. Phys. 19, 96 (2006)CrossRefGoogle Scholar
  33. 33.
    G. Li, H.-J. Werner, F. Lique, M.H. Alexander, J. Chem. Phys. 127, 174302 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    C.F. Bender, P.K. Pearson, S.V. O’Neil, H.F. Schaefer III, J. Chem. Phys. 56, 4626 (1972)Google Scholar
  35. 35.
    R. Steckler, D.W. Schwenke, F.B. Brown, D.G. Truhlar, Chem. Phys. Lett. 121, 475 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    R. Gonzalez-Luque, M. Merchan, B.O. Roos, Chem. Phys. 171, 107 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    H.-J. Werner, M. Kállay, J. Gauss, J. Chem. Phys. 128, 034305 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Frisch, B. Lin, J.S. Binkley, H.F. Schaefer III, W.H. Miller, Chem. Phys. Lett. 114, 1 (1985)ADSCrossRefGoogle Scholar
  39. 39.
    G.E. Scuseria, H.F. Schaefer III, J. Chem. Phys. 88, 7024 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    D.R. Garmer, J.B. Anderson, J. Phys. Chem. 89, 3050 (1988)CrossRefGoogle Scholar
  41. 41.
    Y.Q. Li, J.C. Yuan, M.D. Chen, F.C. Ma, M.T. Sun, J. Comput. Chem. 34, 1686 (2013)CrossRefGoogle Scholar
  42. 42.
    S.P.J. Rodrigues, A.C.G. Fontes, Y.Q. Li, A.J.C. Varandas, Chem. Phys. Lett. 516, 17 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Y.Q. Li, A.J.C. Varandas, J. Phys. Chem. A 114, 9644 (2010)CrossRefGoogle Scholar
  44. 44.
    Y.Q. Li, A.J.C. Varandas, Int. J. Quantum Chem. 112, 2932 (2012)CrossRefGoogle Scholar
  45. 45.
    Y.Q. Li, F.C. Ma, M.T. Sun, J. Chem. Phys. 139, 154305 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    A.J.C. Varandas, J.L. Llanio-Trujillo, Chem. Phys. Lett. 356, 585 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    A.J.C. Varandas, H.G. Yu, Mol. Phys. 91, 301 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    M.Y. Ballester, A.J.C. Varandas, Phys. Chem. Chem. Phys. 7, 2305 (2005)CrossRefGoogle Scholar
  49. 49.
    Y.Q. Li, A.J.C. Varandas, J. Phys. Chem. A 114, 6669 (2010)CrossRefGoogle Scholar
  50. 50.
    Y.Q. Li, Y.Z. Song, P. Song, Y.Z. Li, Y. Ding, M.T. Sun, F.C. Ma, J. Chem. Phys. 136, 194705 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    L.A. Poveda, M. Biczysko, A.J.C. Varandas, J. Chem. Phys. 131, 044309 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    A.J.C. Varandas, L. Zhang, Chem. Phys. Lett. 331, 474 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    A.J.C. Varandas, L. Zhang, Chem. Phys. Lett. 385, 409 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)ADSCrossRefGoogle Scholar
  55. 55.
    A.J.C. Varandas, J. Chem. Phys. 126, 244105 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    A.J.C. Varandas, J. Chem. Phys. 127, 114316 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)ADSCrossRefGoogle Scholar
  58. 58.
    P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)ADSCrossRefGoogle Scholar
  59. 59.
    H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, version 2010.1, a package of ab initio programs (2010)Google Scholar
  60. 60.
    A. Karton, J.M.L. Martin, Theoret. Chim. Acta 115, 330 (2006)CrossRefGoogle Scholar
  61. 61.
    T. Helgaker, W. Klopper, H. Koch, J. Noga, J. Chem. Phys. 106, 9639 (1997)ADSCrossRefGoogle Scholar
  62. 62.
    A.J.C. Varandas, J. Chem. Phys. 113, 8880 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    A.J.C. Varandas, J. Chem. Phys. 131, 124128 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    A.J.C. Varandas, L.A. Poveda, Theor. Chem. Acc. 116, 404 (2006)CrossRefGoogle Scholar
  65. 65.
    L.A. Poveda, A.J.C. Varandas, Phys. Chem. Chem. Phys. 7, 2867 (2005)CrossRefGoogle Scholar
  66. 66.
    A.J.C. Varandas, J.D. Silva, J. Chem. Soc. Faraday Trans. 88, 941 (1992)CrossRefGoogle Scholar
  67. 67.
    A.J.C. Varandas, J. Mol. Struct. Theochem. 120, 401 (1985)CrossRefGoogle Scholar
  68. 68.
    A.J.C. Varandas, J. Chem. Phys. 105, 3524 (1996)ADSCrossRefGoogle Scholar
  69. 69.
    A.J.C. Varandas, S.P.J. Rodrigues, J. Phys. Chem. A 110, 485 (2006)CrossRefGoogle Scholar
  70. 70.
    E. Martínez-Núñez, A.J.C. Varandas, J. Phys. Chem. A 105, 5923 (2001)CrossRefGoogle Scholar
  71. 71.
    A.J.C. Varandas, J.N. Murrell, Faraday Discuss. Chem. Soc. 62, 92 (1977)CrossRefGoogle Scholar
  72. 72.
    A.J.C. Varandas, J.N. Murrell, Chem. Phys. Lett. 88, 440 (1981)ADSCrossRefGoogle Scholar
  73. 73.
    M.R. Pastrana, L.A.M. Quintales, J. Brandão, A.J.C. Varandas, J. Phys. Chem. 94, 8073 (1990)CrossRefGoogle Scholar
  74. 74.
    P. Botschwina, W. Meyer, Chem. Phys. 8420, 20 (1977)Google Scholar
  75. 75.
    W.R. Wadt, N.W. Winter, J. Chem. Phys. 67, 3068 (1977)ADSCrossRefGoogle Scholar
  76. 76.
    W.R. Wadt, N.W. Winter, J. Chem. Phys. 84, 192 (1986)CrossRefGoogle Scholar
  77. 77.
    A.J.C. Varandas, J. Chem. Phys. 70, 3786 (1979)ADSCrossRefGoogle Scholar
  78. 78.
    V. Aquilanti, R. Candori, D. Cappelletti, E. Luzzatti, F. Pirani, Chem. Phys. 145, 293 (1990)ADSCrossRefGoogle Scholar
  79. 79.
    A.J.C. Varandas, Chem. Phys. Lett. 138, 455 (1987)ADSCrossRefGoogle Scholar
  80. 80.
    K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996)ADSCrossRefGoogle Scholar
  81. 81.
    M.D. Chen, K.L. Han, N.Q. Lou, J. Chem. Phys. 118, 4463 (2003)ADSCrossRefGoogle Scholar
  82. 82.
    Z.G. Sun, H. Guo, D.H. Zhang, J. Chem. Phys. 132, 084112 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    Z.G. Sun, S.Y. Lee, H. Guo, D.H. Zhang, J. Chem. Phys. 130, 174102 (2009)ADSCrossRefGoogle Scholar
  84. 84.
    T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)CrossRefGoogle Scholar
  85. 85.
    T.S. Chu, K.L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008)CrossRefGoogle Scholar
  86. 86.
    T.S. Chu, K.L. Han, J. Phys. Chem. A 109, 2050 (2005)CrossRefGoogle Scholar
  87. 87.
    R.F. Lu, T.S. Chu, Y. Zhang, K. Han, A.J.C. Varandas, J.Z.H. Zhang, J. Chem. Phys. 125, 133108 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    T.S. Chu, K.L. Han, A.J.C. Varandas, J. Phys. Chem. A 110, 1666 (2006)CrossRefGoogle Scholar
  89. 89.
    A.J.C. Varandas, T.S. Chu, K.L. Han, P.J.S.B. Caridade, Chem. Phys. Lett. 421, 415 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    P.Y. Zhang, S.J. Lv, Commun. Comput. Chem. 1, 63 (2013)ADSGoogle Scholar
  91. 91.
    J.Z.H. Zhang, W.H. Miller, J. Chem. Phys. 91, 1528 (1989)ADSCrossRefGoogle Scholar
  92. 92.
    E. Rosenman, S. Hochman-Kowal, A. Persky, M. Baer, J. Phys. Chem. 99, 16523 (1995)CrossRefGoogle Scholar
  93. 93.
    E. Rosenman, S. Hochman-Kowal, A. Persky, M. Baer, Chem. Phys. Lett. 239, 141 (1995)ADSCrossRefGoogle Scholar
  94. 94.
    R.T. Skodje, D. Skouteris, D.E. Manolopoulos, S.-H. Lee, F. Dong, K. Liu, J. Chem. Phys. 112, 4536 (2000)ADSCrossRefGoogle Scholar
  95. 95.
    G.M. Leies, Can. J. Phys. 37, 636 (1959)CrossRefGoogle Scholar
  96. 96.
    K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979)Google Scholar
  97. 97.
    K. Huber, G. Herzberg, in Constants of Diatomic Molecules in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom, W.G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2001), http://webbook.nist.gov
  98. 98.
    M.H. Alexander, D.E. Manolopoulos, H.J. Werner, J. Chem. Phys. 113, 11084 (2000)ADSCrossRefGoogle Scholar
  99. 99.
    G.E. Scuseria, J. Chem. Phys. 95, 7426 (1991)ADSCrossRefGoogle Scholar
  100. 100.
    J.S. Wright, M. Kolbuszweski, R.E. Wyatt, J. Chem. Phys. 97, 8296 (1992)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yong-Qing Li
    • 1
    • 2
  • Yu-Zhi Song
    • 3
    Email author
  • António Joaquim de Campos Varandas
    • 4
  1. 1.Department of PhysicsLiaoning UniversityShenyangP.R. China
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalianP.R. China
  3. 3.College of Physics and Electronics, Shandong Normal UniversityJinanP.R. China
  4. 4.Departamento de Quimica and Centro de Quimica Universidade de CoimbraCoimbraPortugal

Personalised recommendations