Advertisement

Effect of spin-orbit interaction on the critical temperature of an ideal Bose gas

  • Arunesh Roy
  • Sayak Ray
  • Subhasis SinhaEmail author
Regular Article

Abstract

We consider Bose-Einstein condensation of an ideal Bose gas with an equal mixture of ‘Rashba’ and ‘Dresselhaus’ spin-orbit interactions and study its effect on the critical temperature. In uniform Bose gas a ‘cusp’ and a sharp drop in the critical temperature occurs due to the change in the density of states at a critical Raman coupling where the degeneracy of the ground states is lifted. Relative drop in the critical temperature depends on the diluteness of the gas as well as on the spin-orbit coupling strength. In the presence of a harmonic trap, the cusp in the critical temperature is smoothened out and a minimum in the critical temperature appears. Both the drop in the critical temperature and lifting of ‘quasi-degeneracy’ of the ground states exhibit crossover phenomena and disappears for sufficiently strong trap frequency. By considering a ‘Dicke’-like model we extend our calculation to bosons with large spin and observe a similar minimum in the critical temperature near the critical Raman frequency, which becomes deeper for larger spin. Finally in the limit of infinite spin, the critical temperature vanishes at the critical frequency, which is a manifestation of Dicke type quantum phase transition.

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    Y.J. Lin, K. Jimenez-Garcia, I.B. Spielman, Nature 471, 83 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    V. Galitski, I.B. Spielman, Nature 494, 49 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)]Google Scholar
  4. 4.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Ruseckas, G. Juzeliünas, P. Ohberg, M. Fleischhauer, Phys. Rev. Lett. 95, 010404 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J. Dalibard, F. Gerbier, G. Juzelinas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wang, C. Gao, C.M. Jian, H. Zhai, Phys. Rev. Lett. 105, 160403 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T.L. Ho, S. Zhang, Phys. Rev. Lett. 107, 150403 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    C. Wu, I. Mondragon-Shem, Chin. Phys. Lett. 28, 097102 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    T. Kawakami, T. Mizushima, K. Machida, Phys. Rev. A 84, 011607(R) (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Sinha, R. Nath, L. Santos, Phys. Rev. Lett. 107, 270401 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Hu et al., Phys. Rev. Lett. 108, 010402 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    X.-J. Liu et al., Phys. Rev. Lett. 98, 026602 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J. Radic, A. Di Ciolo, K. Sun, V. Galitski, Phys. Rev. Lett. 109, 085303 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    W. Cole, S. Zhang, A. Paramekanti, N. Trivedi, Phys. Rev. Lett. 109, 085302 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Grass, K. Saha, K. Sengupta, M. Lewenstein, Phys. Rev. A 84, 053632 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    H. Hu, X.-J. Liu, Phys. Rev. A 85, 013619 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    T. Ozawa, G. Baym, Phys. Rev. Lett. 109, 025301 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    R. Barnett, S. Powell, T. Grass, M. Lewenstein, S. Das Sarma, Phys. Rev. A 85, 023615 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Li, L.P. Pitaevskii, S. Stringari, Phys. Rev. Lett. 108, 225301 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    S.-C. Ji et al., Nat. Phys. 10, 314 (2014)CrossRefGoogle Scholar
  24. 24.
    W. Zheng et al., J. Phys. B 46, 134007 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, 2003)Google Scholar
  26. 26.
    L.D. Landau, L.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd edn. (Elsevier Science, Amsterdam, 1977)Google Scholar
  27. 27.
    R.H. Dicke, Phys. Rev. 93, 99 (1954)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Y. Zhang, G. Chen, C. Zhang, Sci. Rep. 3, 1937 (2013)ADSGoogle Scholar
  29. 29.
    V.V. Ulyanov, O.B. Zaslavskii, Phys. Rep. 216, 179 (1992)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    C. Emary, T. Brandes, Phys. Rev. Lett. 90, 044101 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    C. Emary, T. Brandes, Phys. Rev. E 67, 066203 (2003)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research-KolkataNadiaIndia

Personalised recommendations