Advertisement

Thirty five classes of solutions of the quantum time-dependent two-state problem in terms of the general Heun functions

  • Artur M. IshkhanyanEmail author
  • Tigran A. Shahverdyan
  • Tigran A. Ishkhanyan
Regular Article

Abstract

We derive 35 five-parametric classes of the quantum time-dependent two-state models solvable in terms of the general Heun functions. Each of the classes is defined by a pair of generating functions the first of which is referred to as the amplitude- and the second one as the detuning-modulation function. The classes suggest numerous families of specific field configurations with different physical properties generated by appropriate choices of the transformation of the independent variable, real or complex. There are many families of models with constant detuning or constant amplitude, numerous classes of chirped pulses of controllable amplitude and/or detuning, families of models with double or multiple (periodic) crossings, periodic amplitude modulation field configurations, etc. The detuning modulation function is the same for all the derived classes. This function involves four arbitrary parameters, that is, two more than the previously known hypergeometric classes. These parameters in general are complex and should be chosen so that the resultant detuning is real for the applied (arbitrary) complex-valued transformation of the independent variable. The generalization of the detuning modulation function to the four-parametric case is the most notable extension since many useful properties of the two-state models described by the Heun equation are due to namely the additional parameters involved in this function. Many of the derived amplitude modulation functions present different generalizations of the known hypergeometric models. In several cases the generalization is achieved by multiplying the amplitude modulation function of the corresponding prototype hypergeometric class by an extra factor including an additional parameter. Finally, many classes suggest amplitude modulation functions having forms not discussed before. We present several families of constant-detuning field configurations generated by a real transformation of the independent variable. The members of these families are symmetric or asymmetric two-peak finite-area pulses with controllable distance between the peaks and controllable amplitude of each of the peaks. We show that the edge shapes, the distance between the peaks as well as the amplitude of the peaks are controlled almost independently, by different parameters. We identify the parameters controlling each of the mentioned features and discuss other basic properties of pulse shapes. We show that the pulse edges may become step-wise functions and determine the positions of the limiting vertical-wall edges. We show that the pulse width is controlled by only two of the involved parameters. For some values of these parameters the pulse width diverges and for some other values the pulses become infinitely narrow. We show that the effect of the two mentioned parameters is almost similar, that is, both parameters are able to independently produce pulses of almost the same shape and width. We determine the conditions for generation of pulses of almost indistinguishable shape and width, and present several such examples. Finally, we present a constant-amplitude periodic level-crossing model and several families of constant-detuning field configurations generated by complex transformations of the independent variable.

Keywords

Atomic Physics 

References

  1. 1.
    L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932)Google Scholar
  2. 2.
    C. Zener, Proc. R. Soc. London A 137, 696 (1932) ADSCrossRefGoogle Scholar
  3. 3.
    E. Majorana, Nuovo Cimento 9, 43 (1932)CrossRefGoogle Scholar
  4. 4.
    E.C.G. Stückelberg, Helv. Phys. Acta 5, 369 (1932)Google Scholar
  5. 5.
    M.S. Child, Molecular Collision Theory (Academic Press, London, 1974)Google Scholar
  6. 6.
    E.E. Nikitin, S.Ya. Umanski, Theory of Slow Atomic Collisions (Springer-Verlag, Berlin, 1984)Google Scholar
  7. 7.
    H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and Applications (World Scientific, Singapore, 2012) Google Scholar
  8. 8.
    B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990)Google Scholar
  9. 9.
    B.W. Shore, Manipulating Quantum Structures Using Laser Pulses (Cambridge University Press, New York, 2011) Google Scholar
  10. 10.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999)Google Scholar
  11. 11.
    A.P. Kazantsev, G.I. Surdutovich, V.P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990) Google Scholar
  12. 12.
    P. Meystre, Atom Optics (Springer Verlag, New York, 2001)Google Scholar
  13. 13.
    H. Nakamura, Int. Rev. Phys. Chem. 10, 123 (1991)CrossRefGoogle Scholar
  14. 14.
    H. Nakamura, Ann. Rev. Phys. Chem. 48, 299 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    C. Zhu, Y. Teranishi, H. Nakamura, Adv. Chem. Phys. 117, 127 (2001) Google Scholar
  16. 16.
    in Electron Transfer in Inorganic, Organic, and Biological Systems, edited by J. Bolton, N. Mataga, G. Mclendon (American Chemical Society, Washington D.C., 1991), Vol. 228Google Scholar
  17. 17.
    D. DeVault, Quantum Mechanical Tunnelling in Biological Systems (Cambridge University Press, Cambridge, 1984) Google Scholar
  18. 18.
    D.E. Shaw et al., Science 330, 341 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    W.H. Zurek, U. Dorner, P. Zoller, Phys. Rev. Lett. 95, 105701 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    B. Damski, Phys. Rev. Lett. 95, 035701 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    R. Barankov, A. Polkovnikov, Phys. Rev. Lett. 101, 076801 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    J. Dziarmaga, Adv. Phys. 59, 1063 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    F. Gaitan, Phys. Rev. A 68, 052314 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    D.M. Berns, W.D. Oliver, S.O. Valenzuela, A.V. Shytov, K.K. Berggren, L.S. Levitov, T.P. Orlando, Phys. Rev. Lett. 97, 150502 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    K. Smith-Mannschott, M. Chuchem, M. Hiller, T. Kottos, D. Cohen, Phys. Rev. Lett. 102, 230401 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    A.M. Ishkhanyan, Eur. Phys. Lett. 90, 30007 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J.H. Muller, E. Courtade, M. Anderlini, E. Arimondo, Phys. Rev. Lett. 91, 230406 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    M.-O. Mewes, M.R. Andrews, D.M. Kurn, D.S. Durfee, C.G. Townsend, W. Ketterle, Phys. Rev. Lett. 78, 582 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    N.V. Vitanov, K.-A. Suominen, Phys. Rev. A 56, R4377 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    A. Ishkhanyan, Phys. Rev. A 81, 055601 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    I. Tikhonenkov, E. Pazy, Y.B. Band, M. Fleischhauer, A. Vardi, Phys. Rev. A 73, 043605 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Ishkhanyan, B. Joulakian, K.-A. Suominen, Eur. Phys. J. D 48, 397 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    D. Sun, A. Abanov, V.L. Pokrovsky, Eur. Phys. Lett. 83, 16003 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    A. Ishkhanyan, B. Joulakian, K.-A. Suominen, J. Phys. B 42, 221002 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    F.R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, L.M.K. Vandersypen, Nature Nanotechnology 8, 432 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    W. Wernsdorfer, R. Sessoli, Science 284, 133 (1999) ADSCrossRefGoogle Scholar
  37. 37.
    A.F. Terzis, E. Paspalakis, J. Appl. Phys. 97, 023523 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    P. Földi, M.G. Benedict, F.M. Peeters, Phys. Rev. A 77, 013406 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    S.J. Parke, Phys. Rev. Lett. 57, 1275 (1986) ADSCrossRefGoogle Scholar
  40. 40.
    W.C. Haxton, Phys. Rev. D 35, 2352 (1987) ADSCrossRefGoogle Scholar
  41. 41.
    M. Blennow, A.Yu. Smirnov, Adv. High Energy Phys. 2013, 972485 (2013) CrossRefGoogle Scholar
  42. 42.
    E.E. Nikitin, Opt. Spectrosc. 6, 431 (1962)ADSGoogle Scholar
  43. 43.
    E.E. Nikitin, Disc. Faraday Soc. 33, 14 (1962)CrossRefGoogle Scholar
  44. 44.
    E.E. Nikitin, Ann. Rev. Phys. Chem. 50, 1 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    N. Rosen, C. Zener. Phys. Rev. 40, 502 (1932)ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    Yu.N. Demkov, M. Kunike, Vestn. Leningr. Univ. Fis. Khim. 16, 39 (1969)MathSciNetGoogle Scholar
  47. 47.
    K.-A. Suominen, B.M. Garraway, Phys. Rev. A 45, 374 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    A. Bambini, P.R. Berman, Phys. Rev. A 23, 2496 (1981) ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    F.T. Hioe, C.E. Carroll, Phys. Rev. A 32, 1541 (1985) ADSCrossRefGoogle Scholar
  50. 50.
    F.T. Hioe, C.E. Carroll, J. Opt. Soc. Am. B 3, 497 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    C.E. Carroll, F.T. Hioe, J. Phys. A 19, 3579 (1986) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    A.M. Ishkhanyan, J. Phys. A 30, 1203 (1997) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    A.M. Ishkhanyan, Opt. Commun. 176, 155 (2000) ADSCrossRefGoogle Scholar
  54. 54.
    A.M. Ishkhanyan, J. Contemp. Phys. (Armenian Ac. Sci.) 31, 10 (1996)Google Scholar
  55. 55.
    A.M. Ishkhanyan, J. Phys. A 33, 5539 (2000) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    C.E. Carroll, F.T. Hioe, J. Opt. Soc. Am. B 5, 1335 (1988)ADSCrossRefGoogle Scholar
  57. 57.
    C.E. Carroll, F.T. Hioe, J. Phys. B 22, 2633 (1989) ADSCrossRefGoogle Scholar
  58. 58.
    C.E. Carroll, F.T. Hioe, J. Phys. A 19, 1151 (1986) ADSCrossRefGoogle Scholar
  59. 59.
    C.E. Carroll, F.T. Hioe, Phys. Rev. A 36, 724 (1987)ADSCrossRefGoogle Scholar
  60. 60.
    C.E. Carroll, F.T. Hioe, Phys. Rev. A 42, 1522 (1990) ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    A.M. Ishkhanyan, J. Phys. A 33, 5041 (2000) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    A.M. Ishkhanyan, K.-A. Suominen, Phys. Rev. A 65, 051403(R) (2002) ADSCrossRefGoogle Scholar
  63. 63.
    T.A. Laine, S. Stenholm, Phys. Rev. A 53, 2501 (1996) ADSCrossRefGoogle Scholar
  64. 64.
    N.V. Vitanov, S. Stenholm, Phys. Rev. A 55, 648 (1997)ADSCrossRefGoogle Scholar
  65. 65.
    A.M. Ishkhanyan, Reports (Armenian Ac. Sci.) 102, 320 (2002) Google Scholar
  66. 66.
    A.M. Ishkhanyan, A.M. Manukyan, J. Contemp. Phys. (Armenian Ac. Sci.) 37, 1 (2002)Google Scholar
  67. 67.
    A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, in Higher Transcendental Functions, (McGraw-Hill, New York, 1955), Vol. 3Google Scholar
  68. 68.
    L.J. Slater, Generalized hypergeometric functions (Cambridge University Press, Cambridge, 1966)Google Scholar
  69. 69.
    K. Heun, Math. Ann. 33, 161 (1889)CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    A. Ronveaux, Heun’s Differential Equations (Oxford University Press, London, 1995)Google Scholar
  71. 71.
    S.Yu. Slavyanov, W. Lay, Special Functions (Oxford University Press, Oxford, 2000)Google Scholar
  72. 72.
    in NIST Handbook of Mathematical Functions, edited by F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Cambridge University Press, New York, 2010), http://dlmf.nist.gov/31.12
  73. 73.
    M. Hortacsu, in Proceedings of the 13th Regional Conference of Mathematical Physics, Antalya, Turkey, 2010, edited by U. Camci, I. Semiz (World Scientific, Singapore, 2013), pp. 23–39Google Scholar
  74. 74.
    A.M. Ishkhanyan, A.E. Grigoryan, J. Phys. A 47, 465205 (2014) ADSCrossRefGoogle Scholar
  75. 75.
    P.K. Jha, Yu.V. Rostovtsev, Phys. Rev. A 82, 015801 (2010) ADSCrossRefGoogle Scholar
  76. 76.
    P.K. Jha, Yu.V. Rostovtsev, Phys. Rev. A 81, 033827 (2010) ADSCrossRefGoogle Scholar
  77. 77.
    N. Svartholm, Math. Ann. 116, 413 (1939) CrossRefMathSciNetGoogle Scholar
  78. 78.
    A. Erdélyi, Duke Math. J. 9, 48 (1942)CrossRefMathSciNetGoogle Scholar
  79. 79.
    A. Erdélyi, Q. J. Math. (Oxford) 15, 62 (1944)CrossRefzbMATHGoogle Scholar
  80. 80.
    D. Schmidt, J. Reine Angew. Math. 309, 127 (1979) zbMATHMathSciNetGoogle Scholar
  81. 81.
    E.G. Kalnins, W. Miller, SIAM J. Math. Anal. 22, 1450 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    R.S. Sokhoyan, D.Yu. Melikdzanian, A.M. Ishkhanyan, J. Contemp. Physics (Armenian Ac. Sci.) 40, 1 (2005)Google Scholar
  83. 83.
    T.A. Ishkhanyan, T.A. Shahverdyan, A.M. Ishkhanyan, arXiv:1403.7863 (2014)Google Scholar
  84. 84.
    T.A. Ishkhanyan, A.M. Ishkhanyan, AIP Adv. 4, 087132 (2014) ADSCrossRefGoogle Scholar
  85. 85.
    E.S. Cheb-Terrab, J. Phys. A 37, 9923 (2004) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  86. 86.
    A. Ishkhanyan, J. Phys. A 38, L491 (2005) CrossRefMathSciNetGoogle Scholar
  87. 87.
    A. Ishkhanyan, J. Phys. A 34, L591 (2001) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  88. 88.
    A. Ishkhanyan, K.-A. Suominen, J. Phys. A 36, L81 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  89. 89.
    P.P. Fiziev, J. Phys. A 43, 035203 (2010) ADSCrossRefMathSciNetGoogle Scholar
  90. 90.
    M.N. Hounkonnou, A. Ronveaux, Appl. Math. Comput. 209, 421 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  91. 91.
    V.A. Shahnazaryan, T.A. Ishkhanyan, T.A. Shahverdyan, A.M. Ishkhanyan, Armenian J. Phys. 5, 146 (2012)Google Scholar
  92. 92.
    J.H. Lambert, Acta Helv. 3, 128 (1758)Google Scholar
  93. 93.
    L. Euler, Acta Acad. Scient. Petropol. 2, 29 (1783)Google Scholar
  94. 94.
    A.M. Ishkhanyan, Phys. Rev. A 61, 063611 (2000) ADSCrossRefGoogle Scholar
  95. 95.
    A.M. Ishkhanyan, Laser Phys. 7, 1225 (1997)Google Scholar
  96. 96.
    A.M. Manukyan et al., IJDEA 13, 219 (2014)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Artur M. Ishkhanyan
    • 1
    Email author
  • Tigran A. Shahverdyan
    • 1
    • 2
  • Tigran A. Ishkhanyan
    • 1
    • 2
  1. 1.Institute for Physical ResearchNAS of ArmeniaAshtarakArmenia
  2. 2.Moscow Institute of Physics and TechnologyMoscow RegionRussia

Personalised recommendations