Advertisement

Evaluation of plasma density in RF CCP discharges from ion current to Langmuir probe: experiment and numerical simulation

  • Dmitry VoloshinEmail author
  • Alexander Kovalev
  • Yuri Mankelevich
  • Olga Proshina
  • Tatyana Rakhimova
  • Anna Vasilieva
Regular Article

Abstract

Experimental measurements of current-voltage relationship in RF CCP discharge in argon at 81 MHz have been performed by cylindrical Langmuir probes technique. Two different probe radii have been used: 50 and 250 μm. The high plasma density 1010–1011 cm-3 has been estimated at specific input power under study. The experimental data on nonmonotonic behavior of probe current with pressure were observed firstly for conditions of RF discharge plasmas. To analyze the probe measurements the fast numerical model for ion current collected by a cylindrical probe has been developed. This model is based on the particle-in-cell with Monte-Carlo collision method for ions motion and Boltzmann relation for electrons. The features of probe data at studied conditions were discussed. The comparative analysis of different collisionless approaches for plasma density calculation from ion probe current is done. It is shown that in general collisionless theories underestimate the plasma density value. For correct evaluation of plasma density experimental I-V probe measurement should be supplied by the numerical simulation. It was demonstrated that the collisionless analytical theory of orbital motion can formally give correct results on plasma density at some plasma conditions even when ion collisions take place. The physical reasons of this accidental validity are explained.

Keywords

Plasma Physics 

Supplementary material

References

  1. 1.
    N. Fox-Lyon, A.J. Knoll, J. Franek, V. Demidov, V. Godyak, M. Koepke, G.S. Oehrlein, J. Phys. D 46, 485202 (2013)CrossRefGoogle Scholar
  2. 2.
    K. Kurchikov, A. Kovalev, A. Vasilieva, O. Braginsky, Bull. Am. Phys. Soc. 58, 60 (2013)Google Scholar
  3. 3.
    J.B. Boffard, R.O. Jung, C.C. Lin, A.E. Wendt, Plasma Sources Sci. Technol. 19, 065001 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D.L. Crintea et al., J. Phys. D 42, 045208 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Godyak, V.I. Demidov, J. Phys. D 44, 233001 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    L. Oksuz, F. Soberon, A.R. Ellingboe, J. Appl. Phys. 99, 013304 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    H. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926)ADSCrossRefGoogle Scholar
  9. 9.
    I.B. Bernstein, I.N. Rabinowitz, Phys. Fluids 2, 112 (1959)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    J.G. Laframboise, University Toronto Inst. Aerospace Studies Report No. 100, 1966Google Scholar
  11. 11.
    J.E. Allen, R.L.F. Boyd, P. Reynolds, Proc. Phys. Soc. London B 70, 297 (1957)ADSCrossRefGoogle Scholar
  12. 12.
    Y.S. Chou, L. Talbot, D.R. Willis, Phys. Fluids 9, 2150 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    L. Talbot, Y.S. Chou, in Rarefied Gas Dynamics (Academic Press, New York, 1966), p. 1723Google Scholar
  14. 14.
    Z. Zakrzewski, T. Kopiczyñski, Plasma Phys. 16, 1195 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    M. Tichy, M. Sicha, P. David, T. David, Contrib. Plasma Phys. 34, 59 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    C.H. Shih, E. Levi, AIAA 9, 1673 (1971)CrossRefGoogle Scholar
  17. 17.
    http://www.hidenanalytical.com, Plasma Diagnostics – Plasma Characterisation Using a Langmiur Probe by Hiden Analytical
  18. 18.
    F.F. Chen, J.D. Evans, W. Zawalski, Plasma Sources Sci. Technol. 21, 055002 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    D. Trunec, P. Spanel, D. Smith, Contrib. Plasma Phys. 42, 91 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    F. Taccogna, S. Longo, M. Capitelli, Eur. Phys. J. Appl. Phys. 22, 29 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    A. Cenian, A. Chernukho, A. Bogaerts, R. Gijbels, C. Leys, J. Appl. Phys. 97, 123310 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    F. Iza, J.K. Lee, J. Vac. Sci. Technol. A 24, 1366 (2006)CrossRefGoogle Scholar
  23. 23.
    T. Kopiczynski, DSc. thesis, Institute of Fluid Flow Machines, Gdansk, 1977Google Scholar
  24. 24.
    C.M. Horwitz, J. Vac. Sci. Technol. A 1, 1795 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    V.A. Godyak, R.B. Piejak, J. Vac. Sci. Technol. A 8, 3833 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    T.V. Rakhimova et al., IEEE Trans. Plasma Sci. 35, 1229 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Phelps, J. Appl. Phys. 76, 747 (1994)ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    J.W. Eastwood, R.W. Hockney, Computer Simulation using Particles (McGraw-Hill, New York, 1981)Google Scholar
  30. 30.
    V.V. Ivanov, O.V. Proshina, T.V. Rakhimova, A.T. Rakhimov, D. Herrebout, A. Bogaerts, J. Appl. Phys. 91, 6296 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    M.M. Turner et al., Phys. Plasmas 20, 013507 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dmitry Voloshin
    • 1
    Email author
  • Alexander Kovalev
    • 1
  • Yuri Mankelevich
    • 1
  • Olga Proshina
    • 1
  • Tatyana Rakhimova
    • 1
  • Anna Vasilieva
    • 1
  1. 1.Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University (SINP MSU)MoscowRussian Federation

Personalised recommendations