Advertisement

The initial condition problem of damped quantum harmonic oscillator

  • Yang GaoEmail author
  • Robert F. O’Connell
  • Qing Bin Tang
  • Ru Min Wang
Regular Article

Abstract

We investigate the exact dynamics of the damped quantum harmonic oscillator under the (un)correlated initial conditions. We generalize the master equation to the cases of arbitrary factorized state and/or Gaussian state. For the factorized Gaussian state, we demonstrate that the effects of the initial oscillator-bath correlation are unnoticeable for the evolutions of variances, but can become remarkable for the evolutions of mean values even at high temperature. We also show that the initial dip during the purity evolution always shows up for the factorized initial state, but can disappear for some correlated non-factorizable initial state. Finally, we study the effects of repeated measurements on the time evolution of the damped oscillator. The comparison with the weak coupling results indicates that even for an intermediate coupling, they can give quite different transient behaviors.

Keywords

Quantum Optics 

References

  1. 1.
    H.-P. Breuer, F. Petruccione, Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  2. 2.
    F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Grabert, P. Schramn, G.L. Ingold, Phys. Rep. 168, 115 (1988)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M.W.Y. Tu, W.M. Zhang, Phys. Rev. B 78, 235311 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    H.N. Xiong, W.M. Zhang, X. Wang, M.H. Wu, Phys. Rev. A 82, 012105 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, Phys. Rev. Lett. 109, 170402 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    G.M. Palma, K.A. Suominen, A.K. Ekert, Proc. R. Soc. London Ser. A 452, 567 (1996)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Modi, E.C.G. Sudarshan, Phys. Rev. A 81, 052119 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    E.-M. Laine, J. Piilo, H.-P. Breuer, Europhys. Lett. 92, 60010 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Dajka, J. Luczka, Phys. Rev. A 82, 012341 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    H.T. Tan, W.M. Zhang, Phys. Rev. A 83, 032102 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    V.G. Morozov, S. Mathey, G. Röpke, Phys. Rev. A 85, 022101 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Gao, Eur. Phys. J. D 67, 183 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    C.A. Regal, J.D. Teufel, K.W. Lehnert, Nat. Phys. 4, 555 (2008)CrossRefGoogle Scholar
  16. 16.
    R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, D.J. Wineland, Nat. Phys. 5, 551 (2009)CrossRefGoogle Scholar
  17. 17.
    J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotechnol. 4, 820 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Biercuk, H. Uys, J.W. Britton, A.P. VanDevender, J.J. Bollinger, Nat. Nanotechnol. 5, 646 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    The LIGO Scientific Collaboration, Nat. Phys. 7, 962 (2011)CrossRefGoogle Scholar
  20. 20.
    G.W. Ford, R.F. O’Connell, Phys. Rev. A 76, 042122 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C.M. Smith, A.O. Caldeira, Phys. Rev. A 36, 3509 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    C.M. Smith, A.O. Caldeira, Phys. Rev. A 41, 3103 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    C. Gardiner, P. Zoller, Quantum Noise (Springer, 2004)Google Scholar
  24. 24.
    M. Ban, Phys. Rev. A 80, 064103 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    M. Ban, S. Kitajima, F. Shibata, Phys. Lett. A 374, 2324 (2010)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    R. Doll, D. Zueco, M. Wubs, S. Kohler, P. Hänggi, Chem. Phys. 347, 243 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    J. Thingna, J.S. Wang, P. Hänggi, J. Chem. Phys. 136, 194110 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    W.G. Unruh, W.H. Zurek, Phys. Rev. D 40, 1071 (1989)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. A 37, 4419 (1988)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G.W. Ford, R.F., O’Connell, Phys. Rev. D 64, 105020 (2001)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G.W. Ford, R.F. O’Connell, Ann. Phys. 319, 348 (2005)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    H.B. Callen, T.A. Welton, Phys. Rev. 83, 34 (1951)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    P.D. Drummond, M. Hillery, The Quantum Theory of Nonlinear Optics (Cambridge University Press, Cambridge, 2014)Google Scholar
  34. 34.
    L.A. Pachon, G.L. Ingold, T. Dittrich, Chem. Phys. 375, 209 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    R. Karrlein, H. Grabert, Phys. Rev. E 55, 153 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    C.H. Fleming, A. Roura, B.L. Hu, Ann. Phys. 326, 1207 (2011)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R.P. Feynman, Phys. Rev. 80, 440 (1950)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    E. Pollak, J. Shao, D.H. Zhang, Phys. Rev. E 77, 021107 (2008)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    L.D. Romero, J.P. Paz, Phys. Rev. A 55, 4070 (1997)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    L.E.C. Rosales-Zarate, P.D. Drummond, Phys. Rev. A 84, 042114 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    S. Maniscalco, J. Piilo, K.A. Suominen, Phys. Rev. Lett. 97, 130402 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yang Gao
    • 1
    Email author
  • Robert F. O’Connell
    • 2
  • Qing Bin Tang
    • 1
  • Ru Min Wang
    • 1
  1. 1.Department of PhysicsXinyang Normal UniversityHenanChina
  2. 2.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations