Advertisement

Bicoherence analysis of streamer dynamics induced by trapped ion modes

  • Francesco PalermoEmail author
  • Xavier Garbet
  • Alain Ghizzo
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation. Guest editors: Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison

Abstract

High order spectral analyses have recently attracted a great deal of attention in the context of experimental studies for magnetic fusion. Among these techniques, bicoherence analysis plays an important role as it allows distinguishing between spontaneously excited waves and waves that arise from a coupling between different modes linked to specific physical mechanisms. Here, we describe and apply bicoherence analysis to kinetic simulations performed with reduced “bounce-averaged gyrokinetic” code, in order to investigate the nonlinear dynamics of trapped ion modes. This analysis shows a nonlinear wave coupling process linked to the formation of convective cells, thus furthers our understanding of the nonlinear energy transfer between turbulence structures in tokamaks.

Keywords

Turbulent Transport Trap Particle Magnetic Fusion Inverse Energy Cascade Nonlinear Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    X. Garbet et al., Nucl. Fusion 50, 043002 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    C. Holland, P.H. Diamond, Phys. Lett. A 344, 369 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    P.H. Diamond et al., Plasma Phys. Control. Fusion 47, R35 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    B.Ph. van Milligen et al., Nucl. Fusion 52, 013006 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    M. Xu et al., Phys. Plasmas 16, 042312 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    T. Yamada et al., Phys. Plasmas 17, 052313 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    D.F. Kong et al., Nucl. Fusion 53, 113008 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    Y.C. Kim, J. Powers, IEEE Trans. Plasma Sci. 7, 120 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    G. Depret et al., Plasma Phys. Control. Fusion 42, 949 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Sarazin et al., Plasma Phys. Control. Fusion 47, 1817 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    A. Ghizzo et al., Phys. Plasmas 17, 092501 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    B.B. Kadomtsev, O.P. Pogutse, Nucl. Fusion 11, 67 (1971)CrossRefGoogle Scholar
  13. 13.
    B.Ph. van Milligen et al., Phys. Plasmas 2, 3017 (1995)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    B.Ph. van Milligen et al., Nucl. Fusion 17, 023011 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Francesco Palermo
    • 1
    • 2
    Email author
  • Xavier Garbet
    • 2
  • Alain Ghizzo
    • 3
  1. 1.LMFA, École Centrale de LyonUniversité de LyonEcullyFrance
  2. 2.CEA, IRFMSaint-Paul-Lez-DuranceFrance
  3. 3.Institut Jean Lamour-UMR 7168Université de la LorraineNancyFrance

Personalised recommendations