Advertisement

Geometric discord of the Jaynes-Cummings model: pure dephasing regime

  • Sina Hamedani Raja
  • Hamidreza MohammadiEmail author
  • Seyed Javad Akhtarshenas
Regular Article

Abstract

In this paper, the dynamical behaviour of the geometric discord of a system consisting of a two-level atom interacting with a quantised radiation field described by the Jaynes-Cummings model has been studied. The evolution of the system has been considered in the pure dephasing regime when the field is initially in a general pure state and the atom is initially in a mixed state. Dynamics of the geometric discord, as a measure of non-classical correlation, has been compared with the dynamics of negativity, as a measure of quantum entanglement. In particular, the influence of different parameters of system such as detuning and mixedness of the initial atomic state on the dynamics of geometric discord has been evaluated for when the field is initially in coherent and number states. It is shown that for asymptotically large times, the steady state geometric discord of the system presents a non-zero optimum value at some intermediate value of detuning.

Keywords

Quantum Information 

References

  1. 1.
    T.S. Cubitt, F. Verstraete, W. Dur, J.I. Cirac, Phys. Rev. Lett. 91, 037902 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A. Brodutch, D.R. Terno, Phys. Rev. 81, 062103 (2010)CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Luo, Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    P. Giorda, M.G.A. Paris, Phys. Rev. Lett. 105, 020503 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    L.X. Cen, X.Q. Li, J. Shao, Y.J. Yan, Phys. Rev. A 83, 054101 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B. Dakic, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. Dakic et al., Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Luo, S. Fu, Phys. Rev. A 82, 034302 (2010)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  18. 18.
    S. Furuichi, S. Nakamora, J. Phys. A 35, 5445 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    S. Scheel, J. Eisert, P.L. Knight, M.B. Plenio, J. Mod. Opt. 50, 881 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    S.J. Akhtarshenas, M. Farsi, Phys. Scr. 75, 608 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    F. Beaudoin, J.M. Gambetta, A. Blais, Phys. Rev. A 84, 043832 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    F. Altintas, R. Eryigit, Phys. Rev. A 87, 022124 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    T. Wu, X. Song, L. Ye, Int. J. Mod. Phys. B 27, 1350136 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    C. Jara-Figueroa, A.B. Kilmov, L. Roa, Eur. Phys. J. D 68, 51 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H. Prakash, M.K. Mishra, arXiv:1209.3683 (2012)Google Scholar
  26. 26.
    H.A. Hessian, H. Ritsch, J. Phys. B 35, 4619 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    R. Lo Franco, B. Bellomo, S. Maniscalco, G. Compagno, Int. J. Mod. Phys. B 27, 1345053 (2013)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    G.J. Milburn, Phys. Rev. A 44, 5401 (1991)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    H. Moya-Cessa, V. Buzek, M.S. Kim, P.L. Knight, Phys. Rev. A 48, 3900 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    Shang-Bin Li, Jiang-Bo Xu, Phys. Lett. A 313, 175 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    H. Mohammadi, S.J. Akhtarshenas, F. Kheirandish, Eur. Phys. J. D 62, 439 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    C.W. Gardiner, Quantum Noise (Springer-Verlag, Berlin, 1991)Google Scholar
  33. 33.
    W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)Google Scholar
  34. 34.
    J.-B. Xu, X.-B. Zou, J.-H. Yu, Eur. Phys. J. D 10, 295 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    H. Georgi, Lie Algebras in Particle Physics (Addison-Wesley Publishing Co., 1982)Google Scholar
  36. 36.
    S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    P. Rungta, V. Buzek, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sina Hamedani Raja
    • 1
  • Hamidreza Mohammadi
    • 1
    • 2
    Email author
  • Seyed Javad Akhtarshenas
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of IsfahanIsfahanIran
  2. 2.Quantum Optics GroupUniversity of IsfahanIsfahanIran
  3. 3.Department of PhysicsFerdowsi University of MashhadMashhadIran

Personalised recommendations