Advertisement

Application of laser-produced extended plasma plumes for generation and characterization of the high-order harmonics of 64 fs pulses

  • Rashid A. GaneevEmail author
  • Masayuki Suzuki
  • Hiroto Kuroda
Regular Article
Part of the following topical collections:
  1. Topical issue: X-ray Generation from Ultrafast Lasers

Abstract

Harmonics with the photon energy of up to ~150 eV were studied using extended ablation plumes as the nonlinear media. The application of the ablation pulses of different duration covering the range between a few tens of femtoseconds and a few tens of nanoseconds revealed the advanced features of the extended plasmas produced by the subnanosecond pulses for efficient harmonic generation. The examples of the quasi-phase-matching of a group of harmonics in the plateau range and the advantages of using the two-color pump and cluster-containing plasmas are presented. We analyze the spatial and coherence characteristics of the high-order harmonics produced during propagation of the 64 fs pulse through the extended plasma plume produced by 370 ps pulses. It is shown that the divergence of plasma harmonics in the plateau range is 7 times smaller than the divergence of the driving radiation used for high-order harmonic generation. The measurements of the coherence properties of the lower-order harmonics showed that the visibility of interference fringes in the far field was in the range of 0.54–0.73.

Keywords

Harmonic Generation Plasma Plume Plasma Formation Heating Pulse Harmonic Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, K. Toyoda, Phys. Rev. Lett. 69, 2176 (1992) CrossRefADSGoogle Scholar
  2. 2.
    C.-G. Wahlström, S. Borgström, J. Larsson, S.-G. Pettersson, Phys. Rev. A 51, 585 (1995) CrossRefADSGoogle Scholar
  3. 3.
    W. Theobald, C. Wülker, F.R. Schäfer, B.N. Chichkov, Opt. Commun. 120, 177 (1995) CrossRefADSGoogle Scholar
  4. 4.
    R.A. Ganeev, V.I. Redkorechev, T. Usmanov, Opt. Commun. 135, 251 (1997) CrossRefADSGoogle Scholar
  5. 5.
    K. Krushelnick, W. Tighe, S. Suckewer, J. Opt. Soc. Am. B 14, 1687 (1997) CrossRefADSGoogle Scholar
  6. 6.
    R.A. Ganeev, J. Phys. B 40, R213 (2007) CrossRefADSGoogle Scholar
  7. 7.
    Y. Pertot, S. Chen, S.D. Khan, L.B. Elouga Bom, T. Ozaki, Z. Chang, J. Phys. B 45, 074017 (2012) CrossRefADSGoogle Scholar
  8. 8.
    C. Hutchison, R.A. Ganeev, M. Castillejo, I. Lopez-Quintas, A. Zair, S.J. Weber, F. McGrath, Z. Abdelrahman, M. Oppermann, M. Martín, D.Y. Lei, S.A. Maier, J.W. Tisch, J.P. Marangos, Phys. Chem. Chem. Phys. 15, 12308 (2013) CrossRefGoogle Scholar
  9. 9.
    L.B. Elouga Bom, S. Haessler, O. Gobert, M. Perdrix, F. Lepetit, J.-F. Hergott, B. Carré, T. Ozaki, P. Salières, Opt. Exp. 19, 3677 (2011) CrossRefADSGoogle Scholar
  10. 10.
    S. Haessler, L.B. Elouga Bom, O. Gobert, J.-F. Hergott, F. Lepetit, M. Perdrix, B. Carré, T. Ozaki, P. Salières, J. Phys. B 45, 074012 (2012) CrossRefADSGoogle Scholar
  11. 11.
    R.A. Ganeev, M. Suzuki, M. Baba, H. Kuroda, Phys. Rev. A 76, 023805 (2007) CrossRefADSGoogle Scholar
  12. 12.
    R.A. Ganeev, M. Baba, M. Suzuki, H. Kuroda, Phys. Lett. A 339, 103 (2005) CrossRefADSGoogle Scholar
  13. 13.
    J. Seres, V.S. Yakovlev, E. Seres, C.H. Streli, P. Wobrauschek, C.H. Spielmann, F. Krausz, Nat. Phys. 3, 878 (2007) CrossRefGoogle Scholar
  14. 14.
    A. Pirri, C. Corsi, M. Bellini, Phys. Rev. A 78, 011801 (2008) CrossRefADSGoogle Scholar
  15. 15.
    V. Tosa, V.S. Yakovlev, F. Krausz, New J. Phys. 10, 025016 (2008) CrossRefADSGoogle Scholar
  16. 16.
    C. Kan, N.H. Burnett, C. Capjack, R. Rankin, Phys. Rev. Lett. 79, 2971 (1997) CrossRefADSGoogle Scholar
  17. 17.
    A.V. Andreev, R.A. Ganeev, H. Kuroda, S.Y. Stremoukhov, O.A. Shoutova, Eur. Phys. J. D 67, 22 (2013) CrossRefADSGoogle Scholar
  18. 18.
    R.A. Ganeev, M. Suzuki, H. Kuroda, Phys. Rev. A 89, 033821 (2014) CrossRefADSGoogle Scholar
  19. 19.
    R.A. Ganeev, M. Suzuki, P.V. Redkin, H. Kuroda, J. Nonlin. Opt. Phys. Mater. 23, 1450013 (2014) CrossRefADSGoogle Scholar
  20. 20.
    R.A. Ganeev, M. Suzuki, H. Kuroda, J. Phys. B 47, 105401 (2014) CrossRefADSGoogle Scholar
  21. 21.
    R.A. Ganeev, M. Suzuki, H. Kuroda, J. Exp. Theor. Phys. Lett. 99, 368 (2014) CrossRefGoogle Scholar
  22. 22.
    R.A. Ganeev, T. Witting, C. Hutchison, F. Frank, P.V. Redkin, W.A. Okell, D.Y. Lei, T. Roschuk, S.A. Maier, J.P. Marangos, J.W.G. Tisch, Phys. Rev. A 85, 015807 (2012) CrossRefADSGoogle Scholar
  23. 23.
    O. Kornilov, R. Willcox, O. Gessner, Rev. Sci. Instrum. 81, 063109 (2010) CrossRefADSGoogle Scholar
  24. 24.
    T. Ditmire, E.T. Gumbrell, R.A. Smith, J.W.G. Tisch, D.D. Meyerhofer, M.H.R. Hutchinson, Phys. Rev. Lett. 77, 4756 (1996) CrossRefADSGoogle Scholar
  25. 25.
    T. Ditmire, J.W.G. Tisch, E.T. Gumbrell, R.A. Smith, D.D. Meyerhofer, M.H.R. Hutchinson, Appl. Phys. B 65, 313 (1997) CrossRefADSGoogle Scholar
  26. 26.
    L. Le Déroff, P. Salières, B. Carré, D. Joyeux, D. Phalippou, Phys. Rev. A 61, 043802 (2000) CrossRefADSGoogle Scholar
  27. 27.
    M. Kumar, H. Singhal, J.A. Chakera, P.A. Naik, R.A. Khan, P.D. Gupta, J. Appl. Phys. 114, 033112 (2013) CrossRefADSGoogle Scholar
  28. 28.
    R.A. Ganeev, Z. Abdelrahman, F. Frank, T. Witting, W.A. Okell, D. Fabris, C. Hutchison, J.P. Marangos, J.W.G. Tisch, Appl. Phys. Lett. 104, 021122 (2014) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rashid A. Ganeev
    • 1
    • 2
    Email author
  • Masayuki Suzuki
    • 1
  • Hiroto Kuroda
    • 1
  1. 1.Ophthalmology and Advanced Laser Medical Center, Saitama Medical UniversitySaitamaJapan
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations