Instability conditions for some periodic BGK waves in the Vlasov-Poisson system

  • Stephen PankavichEmail author
  • Robert Allen
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation


A one-dimensional, collisionless plasma given by the Vlasov-Poisson system is considered and the stability properties of periodic steady state solutions known as Bernstein-Greene-Kruskal (BGK) waves are investigated. Sufficient conditions are determined under which BGK waves are linearly unstable under perturbations that share the same period as the equilibria. It is also shown that such solutions cannot support a monotonically decreasing particle distribution function.


Stability Property Vlasov Equation Collisionless Plasma Particle Distribution Function Valeo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.L. Berk, R.R. Dominguez, E.K. Maschke, Phys. Fluids 24, 2245 (1981) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    T.K. Fowler, J. Math. Phys. 4, 559 (1963)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    H.R. Lewis, K.R. Symon, J. Math. Phys. 20, 413 (1979)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Pfirsch, Z. Naturforsch 17a, 861 (1962) ADSGoogle Scholar
  5. 5.
    K. Schindler, D. Pfirsch, H. Wobig, Plasma Phys. 15, 1165 (1973) ADSCrossRefGoogle Scholar
  6. 6.
    J. Schwarzmeier, H.R. Lewis, B. Abraham-Shrauner, K.R. Symon, Phys. Fluids 22, 1747 (1979) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    N.J. Balmforth, Commun. Nonlinear Sci. Numer. Simul. 17, 1989 (2012) ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Brewer, S. Pankavich, SIAM Undergraduate Research Online 4, 81 (2011)CrossRefGoogle Scholar
  9. 9.
    Z. Lin, Math. Res. Lett. 8, 521 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Z. Lin, Commun. Pure Appl. Math. 58, 505 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    C. Nguyen, J. Anderson, S. Pankavich, arXiv:1312.4623 (2013)Google Scholar
  12. 12.
    R.T. Glassey, The Cauchy Problem in Kinetic Theory (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1996)Google Scholar
  13. 13.
    P.J. Morrison, Hamiltonian description of Vlasov dynamics: action-angle variables for the continuous spectrum, in Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Maui, HI, 1998 (2000), Vol. 29, pp. 397–414Google Scholar
  14. 14.
    N. van Kampen, B. Felderhof, Theoretical Methods in Plasma Physics (Wiley, New York, 1967)Google Scholar
  15. 15.
    I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Y. Guo, W.A. Strauss, Commun. Pure Appl. Math. 48, 861 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Y. Guo, W.A. Strauss, Commun. Math. Phys. 195, 267 (1998) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Y. Guo, W.A. Strauss, Comput. Appl. Math. 18, 87 (1999)zbMATHMathSciNetGoogle Scholar
  19. 19.
    G. Manfredi, P. Bertrand, Phys. Plasmas 7, 2425 (2000)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. Zettl, in Sturm-Liouville Theory, Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2005), Vol. 121Google Scholar
  21. 21.
    G.I. Hagstrom, P.J. Morrison, Transp. Theory Stat. Phys. 39, 466 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    M. Ashbaugh, R. Benguria, Proc. Am. Math. Soc. 105, 419 (1989) zbMATHMathSciNetGoogle Scholar
  23. 23.
    R. Lavine, Proc. Am. Math. Soc. 121, 815 (1994) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    F. Engelmann, M. Feix, E. Minardi, Nuovo Cimento 30, 830 (1963)CrossRefGoogle Scholar
  25. 25.
    E. Valeo, C. Oberman, M. Kruskal, Phys. Fluids 12, 1246 (1969) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsColorado School of MinesGoldenUSA
  2. 2.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA

Personalised recommendations